Back to Journals » International Journal of Nanomedicine » Volume 7

Optical imaging to trace near infrared fluorescent zinc oxide nanoparticles following oral exposure

Authors Lee C, Jeong H, Yu K, Kim DW, Sohn M, Lee JK, Jeong J, Lim ST

Received 10 April 2012

Accepted for publication 6 May 2012

Published 27 June 2012 Volume 2012:7 Pages 3203—3209

DOI https://doi.org/10.2147/IJN.S32828

Review by Single anonymous peer review

Peer reviewer comments 3



Chang-Moon Lee,1–4,* Hwan-Jeong Jeong,1–4,* Kuk-No Yun,1–3 Dong Wook Kim,1–4 Myung-Hee Sohn,1–4 Jong Kwon Lee,5 Jayoung Jeong,5 Seok Tae Lim1–4

*These authors contributed equally to this work.

1Department of Nuclear Medicine; 2Cyclotron Research Center; 3Research Institute of Clinical Medicine; 4Institute for Medical Sciences, Chonbuk National University Medical School and Hospital, Jeonju, Jeollabuk-Do, Republic of Korea; 5Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Osong-Eup, Chungchungbuk-Do, Republic of Korea

Background: Understanding how nanomaterials are distributed in the body after exposure is important for assessing whether they are safe. In this study, we investigated the behavior and accumulation of nanoscaled and submicron-scaled zinc oxide (ZnO) particles in the body using optical imaging following oral exposure.
Methods: To trace these nanoparticles in the body, ZnO nanoparticles were conjugated with a monoreactive hydroxysuccinimide ester of Cy5.5 (Cy5.5-NHS), and the conjugation-stabilizing effect of Cy5.5 on the nanoparticles was evaluated in simulated gastric fluid (pH 1.2) for 7 hours. To compare the distribution of Cy5.5-NHS and Cy5.5-conjugated ZnO nanoparticles, Cy5.5-NHS 0.5 mg/kg and Cy5.5-conjugated ZnO nanoparticles 250 mg/kg were administered orally to healthy rats. We collected blood from the rats at predesignated time points for 7 hours after administration, and optical imaging studies were performed at 1, 2, 3, 5, and 7 hours after dosing. To investigate the extent of nanoparticle accumulation in the organs and tissues, the mice were sacrificed at 23 hours after administration, and the organs were removed and imaged.
Results: Cy5.5-conjugated ZnO nanoparticles were stable in simulated gastric fluid for 7 hours. The signal intensity of Cy5.5-NHS in blood was highest 3 hours after oral administration, and Cy5.5-conjugated ZnO nanoparticles showed the highest signal intensity in blood 5–7 hours after administration. In vivo optical images indicated that Cy5.5-NHS showed optical signals in the lung, liver, and gastrointestinal tract after oral administration, whereas Cy5.5-conjugated ZnO nanoparticles were seen only in the gastrointestinal tract. Seven hours following administration, biodistribution studies demonstrated that Cy5.5-NHS accumulated in the lung and liver, and Cy5.5-conjugated ZnO nanoparticles resulted in a strong signal in the kidney and liver. Different-sized ZnO nanoparticles showed dissimilar patterns of biodistribution in ex vivo optical images.
Conclusion: ZnO nanoparticles are absorbed into the tissues following oral exposure and their behavior can be monitored and evaluated using optical imaging.

Keywords: zinc oxide nanoparticles, biodistribution, optical imaging, oral administration

Creative Commons License © 2012 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.