Back to Browse Journals » Research and Reports in Urology » Volume 7

One-year monitoring of an oligonucleotide fluorescence in situ hybridization probe panel laboratory-developed test for bladder cancer detection

Authors Tinawi-Aljundi R, King L, Knuth ST, Gildea M, Ng C, Kahl J, Dion J, Young C, Schervish EW, Frontera JR, Hafron J, Kernen KM, Di Loreto R, Aurich-Costa J

Received 11 December 2014

Accepted for publication 12 February 2015

Published 9 April 2015 Volume 2015:7 Pages 49—55

DOI https://doi.org/10.2147/RRU.S79085

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Dr Jan Colli

Rima Tinawi-Aljundi,1 Lauren King,2 Shannon T Knuth,2 Michael Gildea,2 Carrie Ng,2 Josh Kahl,2 Jacqueline Dion,2 Chris Young,2 Edward W Schervish,1 J Rene Frontera,1 Jason Hafron,1 Kenneth M Kernen,1 Robert Di Loreto,1 Joan Aurich-Costa2

1Michigan Institute of Urology, St Claire Shores, MI, USA; 2Cellay, Inc., Cambridge, MA, USA

Background: Previously, we had developed and manufactured an oligonucleotide fluorescence in situ hybridization (OligoFISH) probe panel based on the most clinically sensitive chromosomes found in a reference set of bladder carcinoma cases. The panel was clinically validated for use as a diagnostic and monitoring assay for bladder cancer, reaching 100% correlation with the results of the UroVysion test. After 1 year of using this probe panel, we present here the comparison of cytology, cystoscopy, and pathology findings to the OligoFISH probe panel results to calculate its clinical performance.
Materials and methods: In order to calculate clinical performance, we compared the OligoFISH results to the cytology and cystoscopy/pathology findings for 147 initial diagnoses and 399 recurrence monitorings. Finally, we compared clinical performance to published values for the UroVysion test, including both low- and high-grade tumors.
Results: Chromosomes 3, 6, 7, and 20 were highly involved in bladder carcinoma aneuploidy. At the initial diagnosis, we obtained 90.5% (95% confidence interval [CI]: 84.5%–94.7%) accuracy, 96.8% sensitivity (95% CI: 91.0%–99.3%), 79.2% specificity (95% CI: 65.9%–87.8%), 89.2% positive predictive value (PPV; 95% CI: 81.5%–94.5%), and 93.3% negative predictive value (NPV; 95% CI: 81.7%–97.3%). When monitoring for recurrence, we obtained 85.2% accuracy (95% CI: 81.3%–88.5%), 82.0% sensitivity (95% CI: 76.0%–87.1%), 88.4% specificity (95% CI: 83.2%–92.5%), 87.7% PPV (95% CI: 82.1%–92.0%), and 83.0% NPV (95% CI: 77.3%–87.8%). When looking at low- and high-grade tumors, the test showed 100% sensitivity for high-grade tumors (95% CI: 92.5%–100%) and 87.5% sensitivity (95% CI: 68.8%–95.5%) for low-grade tumors. All the clinical parameters for the OligoFISH panel were higher than the UroVysion test's published performance. We found significantly higher clinical sensitivity and NPV at initial diagnosis and significantly higher specificity and PPV for recurrence.
Conclusion: The OligoFISH probe panel is a fast, easy, and reproducible test for bladder cancer diagnosis and monitoring, with excellent clinical performance and utility.

Keywords: UroVysion, FISH, urologic oncology, bladder neoplasm

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Pharmacokinetics and pharmacodynamics of acetylsalicylic acid after intravenous and oral administration to healthy volunteers

Nagelschmitz J, Blunck M, Kraetzschmar J, Ludwig M, Wensing G, Hohlfeld T

Clinical Pharmacology: Advances and Applications 2014, 6:51-59

Published Date: 19 March 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010