Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Oil-in-water biocompatible microemulsion as a carrier for the antitumor drug compound methyl dihydrojasmonate

Authors Silva GB, Scarpa MV, Carlos IZ, Quilles MB, Lia RC, Egito ES, Oliveira AG

Received 7 July 2014

Accepted for publication 27 September 2014

Published 12 January 2015 Volume 2015:10(1) Pages 585—594

DOI https://doi.org/10.2147/IJN.S67652

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Editor who approved publication: Dr Thomas J Webster

Gisela Bevilacqua Rolfsen Ferreira da Silva,1 Maria Virginia Scarpa,1 Iracilda Zepone Carlos,2 Marcela Bassi Quilles,2 Raphael Carlos Comeli Lia,3 Eryvaldo Socrates Tabosa do Egito,4 Anselmo Gomes de Oliveira1

1Departamento de Fármacos e Medicamentos, 2Departamento de Análises Clínicas, UNESP–Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, PPG em Nanotecnologia Farmacêutica, Rodovia Araraquara-Jaú Km 01, Araraquara, SP, Brazil; 3Instituto de Patologia Cirúrgica e Citopatologia (IPC), Araraquara, SP, Brazil; 4UFRN–Universidade Federal do Rio Grande do Norte, Programa de Pós-graduação em Ciências da Saúde, Natal, RN, Brazil

Abstract: Methyl dihydrojasmonate (MJ) has been studied because of its application as an antitumor drug compound. However, as MJ is a poorly water-soluble compound, a suitable oil-in-water microemulsion (ME) has been studied in order to provide its solubilization in an aqueous media and to allow its administration by the parenteral route. The ME used in this work was characterized on the pseudo-ternary phase diagram by dynamic light scattering and rheological measurements. Regardless of the drug presence, the droplet size was directly dependent on the oil/surfactant (O/S) ratio. Furthermore, the drug incorporation into the ME significantly increased the ME diameter, mainly at low O/S ratios. The rheological evaluation of the systems showed that in the absence of drug a Newtonian behavior was observed. On the other hand, in the presence of MJ the ME systems revealed pseudoplastic behavior, independently of the O/S ratio. The in vivo studies demonstrated that not only was the effect on the tumor inhibition inversely dependent on the MJ-loaded ME administered dose, but also it was slightly higher than the doxorubicin alone, which was used as the positive control. Additionally, a small antiangiogenic effect for MJ-loaded ME was found at doses in which it possesses antitumor activity. MJ revealed to be nontoxic at doses higher than 350 mg/kg, which was higher than the dose that provides tumor-inhibition effect in this study. Because the MJ-loaded ME was shown to have anticancer activity comparable to doxorubicin, the ME described here may be considered a suitable vehicle for parenteral administration of MJ.

Keywords: antitumor drug, nanocarrier, angiogenesis inhibition, antitumor activity, Ehrlich ascitic tumor

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

Readers of this article also read:

Molecular targets in arthritis and recent trends in nanotherapy

Roy K, Kanwar RK, Kanwar JR

International Journal of Nanomedicine 2015, 10:5407-5420

Published Date: 26 August 2015

Is increasing the dose of Entecavir effective in partial virological responders?

Erturk A, Adnan Akdogan R, Parlak E, Cure E, Cumhur Cure M, Ozturk C

Drug Design, Development and Therapy 2014, 8:621-625

Published Date: 29 May 2014

Vincristine sulfate liposomal injection for acute lymphoblastic leukemia

Soosay Raj TA, Smith AM, Moore AS

International Journal of Nanomedicine 2013, 8:4361-4369

Published Date: 6 November 2013

Photodynamic therapy of a 2-methoxyestradiol tumor-targeting drug delivery system mediated by Asn-Gly-Arg in breast cancer

Shi J, Wang Z, Wang L, Wang H, Li L, Yu X, Zhang J, Ma R, Zhang Z

International Journal of Nanomedicine 2013, 8:1551-1562

Published Date: 19 April 2013

Controlled-release approaches towards the chemotherapy of tuberculosis

Saifullah B, Hussein MZ, Hussein Al Ali SH

International Journal of Nanomedicine 2012, 7:5451-5463

Published Date: 12 October 2012