Back to Journals » Research and Reports in Biochemistry » Volume 5

NUB1 suppression of Huntington toxicity: mechanistic insights

Authors Yao Y, Lu B

Received 26 February 2015

Accepted for publication 1 April 2015

Published 27 May 2015 Volume 2015:5 Pages 129—136

DOI https://doi.org/10.2147/RRBC.S65546

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Professor Nikolay Dokholyan

Yao Yao, Boxun Lu

 Department of Biophysics, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China

Abstract: Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder marked by chorea, dystonia, incoordination, and cognitive and motor disturbance. The major cause of HD is the cytotoxicity of the mutant huntingtin protein (mHTT), encoded by the mutant HTT gene. The mechanism by which mHTT leads to cytotoxicity and neuronal death is unclear, and thus enhancing clearance of the mHTT protein is likely to be an effective approach to treat HD. We have recently identified NUB1 (negative regulator of ubiquitin-like proteins 1) as a modifier of mHTT levels via enhancement of its proteasomal degradation. In this review, we will discuss the mechanism of NUB1-mediated mHTT clearance and potential targeting strategies.

Keywords: drug target discovery, Huntington’s disease, NEDD8, ubiquitination

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Rituximab for managing acquired hemophilia A in a case of chronic neutrophilic leukemia with the JAK2 kinase V617F mutation

Imashuku S, Kudo N, Kubo K, Saigo K, Okuno N, Tohyama K

Journal of Blood Medicine 2012, 3:157-161

Published Date: 5 December 2012

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010