Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Novel thermosensitive hydrogel for preventing formation of abdominal adhesions

Authors Gao X , Deng X, Wei X, Shi H, Wang F, Ye T, Shao B, Nie W, Li Y, Luo M, Gong C , Huang N

Received 7 April 2013

Accepted for publication 15 May 2013

Published 11 July 2013 Volume 2013:8(1) Pages 2453—2463

DOI https://doi.org/10.2147/IJN.S46357

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2



Xiang Gao,1,2 Xiaohui Deng,3 Xiawei Wei,2 Huashan Shi,2 Fengtian Wang,2 Tinghong Ye,2 Bin Shao,2 Wen Nie,2 Yuli Li,2 Min Luo,2 Changyang Gong,2 Ning Huang1

1Department of Pathophysiology, College of Preclinical and Forensic Medical Sciences, Sichuan University, Chengdu, 2State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 3Department of Human Anatomy, Xinxiang Medical University, Xinxiang, People’s Republic of China

Abstract: Adhesions can form after almost any type of abdominal surgery. Postoperative adhesions can be prevented by improved surgical techniques, such as reducing surgical trauma, preventing ischemia, and avoiding exposure of the peritoneal cavity to foreign materials. Although improved surgical techniques can potentially reduce formation of adhesions, they cannot be eliminated completely. Therefore, finding more effective methods to prevent postoperative adhesions is imperative. Recently, we found that a novel thermosensitive hydrogel, ie, poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCEC) had the potential to prevent postoperative adhesions. Using the ring-opening polymerization method, we prepared a PCEC copolymer which could be dissolved and assembled at 55°C into PCEC micelles with mean size of 25 nm. At body temperature, a solution containing PCEC micelles could convert into a hydrogel. The PCEC copolymer was biodegradable and had low toxicity in vitro and in vivo. We found that most animals in a hydrogel-treated group (n = 10) did not develop adhesions. In contrast, 10 untreated animals developed adhesions that could only be separated by sharp dissection (P < 0.001). The hydrogel could adhere to peritoneal wounds and degraded gradually over 7–9 days, transforming into a viscous fluid that was completely absorbed within 12 days. The injured parietal and visceral peritoneum remesothelialized over about seven and nine days, respectively. This study confirms that PCEC hydrogel has potential application in the prevention of postoperative adhesions.

Keywords: poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone), thermosensitive, biodegradable, hydrogel, postoperative adhesions

Creative Commons License © 2013 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.