Back to Journals » Clinical Ophthalmology » Volume 11

Novel positioning sensor with real-time feedback for improved postoperative positioning: pilot study in control subjects

Authors Brodie FL, Ramirez DA, Pandian S, Woo K, Balakrishna A, De Juan E, Choo H, Grubbs RH

Received 19 February 2017

Accepted for publication 13 April 2017

Published 19 May 2017 Volume 2017:11 Pages 939—944

DOI https://doi.org/10.2147/OPTH.S135128

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Colin Mak

Peer reviewer comments 2

Editor who approved publication: Dr Scott Fraser

Frank L Brodie,1 David A Ramirez,2,* Sundar Pandian,3,* Kelly Woo,3 Ashwin Balakrishna,3 Eugene De Juan,1 Hyuck Choo,3 Robert H Grubbs3

1Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA; 2School of Medicine, University of California San Francisco, San Francisco, CA, USA; 3Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA

*These authors contributed equally to this work

Introduction: Repair of retinal detachment frequently requires use of intraocular gas. Patients are instructed to position themselves postoperatively to appose the intraocular bubble to the retinal break(s). We developed a novel wearable wireless positioning sensor, which provides real-time audiovisual feedback on the accuracy of positioning.
Methods: Eight healthy volunteers wore the wireless sensor for 3 hours while instructed to maintain their head tilted toward the 2 o’clock meridian with no audiovisual feedback. Positioning accuracy was recorded. The subjects repeated the experiment for 3 hours with the audiovisual feedback enabled.
Results: With no audiovisual feedback, the percentage of time greater than 10° out of position varied from 8.9% to 93.9%. With audiovisual feedback enabled, these percentages ranged from 9.4% to 65%. Three subjects showed significant improvement in their time out of position (P<0.01, Fisher’s exact test). Four subjects demonstrated a nonsignificant improvement, and one subject had a significant increase in time out of position with feedback (P<0.01). When pooled, all subjects demonstrated a statistically significant decrease in degrees out of position (P<0.001, Wilcoxon test) and a statistically significant improvement in total time out of position (P<0.001).
Conclusion: The novel positioning sensor showed improved positioning compliance in half of the healthy volunteers during our short pilot study. Other subjects derived little benefit from the feedback. The causes for this observation are unclear. However, given the significant improvement as a group, this new technology could be beneficial to patients who struggle with postoperative positioning.

Keywords: retinal detachment, pneumatic retinopexy, intraocular gas, device, postoperative positioning, vitrectomy, macular hole

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

Validation of sensor for postoperative positioning with intraocular gas

Brodie FL, Woo KY, Balakrishna A, Choo H, Grubbs RH

Clinical Ophthalmology 2016, 10:955-960

Published Date: 25 May 2016