Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Novel delivery system for T-oligo using a nanocomplex formed with an alpha helical peptide for melanoma therapy

Authors Uppada S, Erickson T, Wojdyla L, Moravec D, Song Z, Cheng J, Puri N

Received 29 September 2013

Accepted for publication 6 November 2013

Published 17 December 2013 Volume 2014:9(1) Pages 43—53

DOI https://doi.org/10.2147/IJN.S55133

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3


Srijayaprakash B Uppada,1,* Terrianne Erickson,1 Luke Wojdyla,1 David N Moravec,1 Ziyuan Song,2 Jianjun Cheng,2 Neelu Puri1,*

1Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, 2Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA

*These authors contributed equally to this work

Abstract: Oligonucleotides homologous to 3'-telomere overhang (T-oligos) trigger inherent telomere-based DNA damage responses mediated by p53 and/or ATM and induce senescence or apoptosis in various cancerous cells. However, T-oligo has limited stability in vivo due to serum and intracellular nucleases. To develop T-oligo as an innovative, effective therapeutic drug and to understand its mechanism of action, we investigated the antitumor effects of T-oligo or T-oligo complexed with a novel cationic alpha helical peptide, PVBLG-8 (PVBLG), in a p53 null melanoma cell line both in vitro and in vivo. The uptake of T-oligo by MM-AN cells was confirmed by immunofluorescence, and fluorescence-activated cell sorting analysis indicated that the T-oligo-PVBLG nanocomplex increased uptake by 15-fold. In vitro results showed a 3-fold increase in MM-AN cell growth inhibition by the T-oligo-PVBLG nanocomplex compared with T-oligo alone. Treatment of preformed tumors in immunodeficient mice with the T-oligo-PVBLG nanocomplex resulted in a 3-fold reduction in tumor volume compared with T-oligo alone. This reduction in tumor volume was associated with decreased vascular endothelial growth factor expression and induction of thrombospondin-1 expression and apoptosis. Moreover, T-oligo treatment downregulated procaspase-3 and procaspase-7 and increased catalytic activity of caspase-3 by 4-fold in MM-AN cells. Furthermore, T-oligo induced a 10-fold increase of senescence and upregulated the melanoma tumor-associated antigens MART-1, tyrosinase, and thrombospondin-1 in MM-AN cells, which are currently being targeted for melanoma immunotherapy. Interestingly, siRNA-mediated knockdown of p73 (4–10-fold) abolished this upregulation of tumor-associated antigens. In summary, we suggest a key role of p73 in mediating the anticancer effects of T-oligo and introduce a novel nanoparticle, the T-oligo-PVBLG nanocomplex, as an effective anticancer therapeutic.

Keywords: T-oligo, melanoma, senescence, angiogenesis, apoptosis

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]