Back to Journals » International Journal of Nanomedicine » Volume 11

Nontoxic hydrophilic polymeric nanocomposites containing silver nanoparticles with strong antimicrobial activity

Authors Pozdnyakov A, Emel’yanov A, Kuznetsova N, Ermakova T, Fadeeva T, Sosedova L, Prozorova G

Received 27 October 2015

Accepted for publication 23 December 2015

Published 31 March 2016 Volume 2016:11 Pages 1295—1304

DOI https://doi.org/10.2147/IJN.S98995

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Dr Thomas Webster


Alexander S Pozdnyakov,1 Artem I Emel’yanov,1 Nadezhda P Kuznetsova,1 Tamara G Ermakova,1 Tat’yana V Fadeeva,2 Larisa M Sosedova,3 Galina F Prozorova1

1AE Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 2Federal State Budgetary Scientific Institution Irkutsk Scientific Center of Surgery and Traumatology, Laboratory of Functional Genomics and Interspecific Interactions of Microorganisms, Irkutsk, 3East-Siberian Institute of Medical & Ecological Science, Department of Biomodeling & Translational Investigation, Angarsk, Russia

Abstract: New nontoxic hydrophilic nanocomposites containing metallic silver nanoparticles (AgNPs) in a polymer matrix were synthesized by the chemical reduction of silver ions in an aqueous medium. A new nontoxic water soluble copolymer of 1-vinyl-1,2,4-triazole and N-vinylpyrrolidone synthesized by free radical-initiated polymerization was used as a stabilizing agent. Transmission electron microscopy, scanning electron microscopy, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, atomic absorption, and thermogravimetric analysis were used to characterize polymeric AgNPs nanocomposites. The results showed that the diameter of the synthesized AgNPs ranged from 2 to 6 nm. The toxicity of the initial copolymer of 1-vinyl-1,2,4-triazole and N-vinylpyrrolidone and its nanocomposite with AgNPs was found to be more than 5,000 mg/kg. The synthesized AgNP polymeric nanocomposite showed significant antimicrobial activity against different strains of Gram-negative and -positive bacteria. The minimum inhibitory concentrations suppressing the growth of the microorganisms ranged from 0.5 to 8 µg/mL and the minimum bactericidal concentrations ranged from 0.5 to 16 µg/mL. The fabricated AgNP nanocomposites are promising materials for the design of novel nontoxic hydrophilic antiseptics and antimicrobial components for medical purposes.

Keywords: nontoxic nanocomposites, antimicrobial activity, silver nanoparticles, 1-vinyl-1,2,4-triazole, N-vinylpyrrolidone

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]