Back to Journals » Therapeutics and Clinical Risk Management » Volume 5

New therapies in the management of Niemann-Pick type C disease: clinical utility of miglustat

Authors Wraith E, Imrie J

Published 3 November 2009 Volume 2009:5 Pages 877—887

DOI https://doi.org/10.2147/TCRM.S5777

Review by Single-blind

Peer reviewer comments 2

James E Wraith, Jackie Imrie

Willink Biochemical Genetics Unit, Royal Manchester Children’s Hospital, Manchester, UK

Abstract: Niemann-Pick disease type C (NP-C) is an autosomal recessive disorder characterized by progressive neurological deterioration leading to premature death. The disease is caused by mutations in one of two genes, NPC1 or NPC2, leading to impaired intracellular lipid transport and build-up of lipids in various tissues, particularly the brain. Miglustat (Zavesca®), a reversible inhibitor of glycosphingolipid synthesis, has recently been authorized in the European Union, Brazil and South Korea for the treatment of progressive neurological symptoms in adult and pediatric patients, and represents the first specific treatment for NP-C. Here we review current data on the pharmacology, efficacy, safety and tolerability of miglustat in patients with NP-C, based on findings from a prospective clinical trial, preclinical and retrospective studies, and case reports. Findings demonstrated clinically relevant beneficial effects of miglustat on neurological disease progression in adult, juvenile and pediatric patients with NP-C, particularly those diagnosed in late childhood (6–11 years) and in juveniles and adults (12 years and older), compared with those diagnosed in early childhood (younger than 6 years). Miglustat therapy was well-tolerated in all age groups. With the approval of miglustat, treatment of patients with NP-C can now be aimed toward stabilizing neurological disease, which is likely the best attainable therapeutic goal for this disorder.

Keywords: Niemann-Pick disease type C, NP-C, miglustat, Zavesca®

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010