Back to Browse Journals » Drug Design, Development and Therapy » Volume 7

New and emerging treatments for symptomatic tardive dyskinesia

Authors Rana AQ, Chaudry ZM, Blanchet PJ

Received 5 May 2013

Accepted for publication 27 July 2013

Published 6 November 2013 Volume 2013:7 Pages 1329—1340

DOI https://doi.org/10.2147/DDDT.S32328

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Abdul Qayyum Rana,1–4 Zishan M Chaudry,5 Pierre J Blanchet6

1Parkinson's Clinic of Eastern Toronto and Movement Disorders Centre, Toronto, ON, Canada; 2Scarborough Memory Program, Toronto, ON, Canada; 3Journal of Parkinsonism and RLS, Toronto, ON, Canada; 4Bulletin of World Parkinson's Program, Toronto, ON, Canada; 5Saba University School of Medicine, The Bottom, Saba, Dutch Caribbean; 6Department of Stomatology, University of Montreal, Montreal, QC, Canada

Abstract: The aim of this review is to assess new, emerging, and experimental treatment options for tardive dyskinesia (TD). The methods to obtain relevant studies for review included a MEDLINE search and a review of studies in English, along with checking reference lists of articles. The leading explanatory models of TD development include dopamine receptor supersensitivity, GABA depletion, cholinergic deficiency, neurotoxicity, oxidative stress, changes in synaptic plasticity, and defective neuroadaptive signaling. As such, a wide range of treatment options are available. To provide a complete summary of choices we review atypical antipsychotics along with resveratrol, botulinum toxin, Ginkgo biloba, tetrabenazine, clonazepam, melatonin, essential fatty acids, zonisamide, levetiracetam, branched-chain amino acids, drug combinations, and invasive surgical treatments. There is currently no US Food and Drug Administration-approved treatment for TD; however, prudent use of atypical antipsychotics with routine monitoring remain the cornerstone of therapy, with experimental treatment options available for further management.

Keywords: tardive dyskinesia, first-generation antipsychotics, motor symptoms, schizophrenia, Parkinson's, atypical antipsychotics

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010