Back to Journals » Research and Reports in Neonatology » Volume 2

Neonatal hypokalemia

Authors Sarici, Sarici SU

Received 19 January 2012

Accepted for publication 10 February 2012

Published 29 March 2012 Volume 2012:2 Pages 15—19

DOI https://doi.org/10.2147/RRN.S28457

Review by Single-blind

Peer reviewer comments 2


Dilek Sarici1, S Umit Sarici2

1Kecioren Research and Education Hospital, Kecioren, Ankara, 2Chief of Division of Neonatology, Division of Neonatology, Department of Pediatrics, Gulhane Military Medical Academy, Ankara, Turkey

Abstract: In this article, distribution of potassium (K+) in body fluids, pathophysiology, causes, clinical signs and symptoms, and the evaluation and treatment of neonatal hypokalemia are reviewed. K+ is the most important intracellular cation and normal serum K+ is stabilized between 3.5 and 5.5 mEq/L. Hypokalemia may be caused by increased renal losses, increased extrarenal (gastrointestinal) losses, redistribution or prolonged insufficient K+ intake. Clinical signs and symptoms occur as the result of functional changes in striated muscle, smooth muscle, and the heart. Hypokalemia is usually asymptomatic when K+ levels are between 3.0 and 3.5 mEq/L; however, there may sometimes be slight muscle weakness. Moderate hypokalemia is observed when serum K+ is between 2.5 and 3.0 mEq/L. Proximal muscle weakness is observed most commonly in lower extremities; cranial muscles are normal, but constipation and distention are prominent. Severe hypokalemia develops when serum K+ falls below 2.5 mEq/L. Rhabdomyolysis, myoglobinuria, severe muscle weakness, paralysis, respiratory distress, and respiratory arrest are observed. The clinical signs and symptoms may be unremarkable in cases of chronically developing hypokalemia; however, appropriate treatment is essential when serum K+ level falls below 2.5 mEq/L as the most dangerous complication of hypokalemia is fatal cardiac arrythmia, and changes visible with electrocardiography may not always correlate with the level of hypokalemia. Sodium (Na+), K+, chloride (Cl-), bicarbonate, creatinine, blood sugar, magnesium (Mg), plasma renin activity, aldosterone, and blood gases should be investigated by laboratory testing. Aspartate aminotransferase, alanine aminotransferase, creatinine kinase, and creatinine kinase isoenzyme MB should be studied if rhabdomyolysis is suspected. In urine sample density, pH, Na+, K+, Cl-, Mg, creatinine, and myoglobinuria (blood reaction is positive in the absence of erythrocytes on microscopic examination of urine) should be investigated. The primary aim of therapy is to prevent and treat life-threatening cardiac and muscular complications. However, in the presence of severe symptomatic hypokalemia and gastrointestinal problems such as ileus, the intravenous route may be used in cases where serum K+ level is usually below 2.6 mEq/L. K+ given in intravenous fluids should not exceed 40 mEq/L. In case of emergency, 0.3–1 mEq/kg of K+ may be given intravenously over 1 hour. When higher concentrations (60–80 mEq/L) are needed, infusion through a central vein under electrocardiography monitoring may be used.

Keywords: neonatal, hypokalemia, newborn
 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]