Back to Browse Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols

Authors Meenach SA, Vogt FG, Anderson KW, Hilt JZ, McGarry RC, Mansour HM

Received 13 September 2012

Accepted for publication 6 November 2012

Published 14 January 2013 Volume 2013:8(1) Pages 275—293


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Samantha A Meenach,1,2 Frederick G Vogt,3 Kimberly W Anderson,2,4 J Zach Hilt,2,4 Ronald C McGarry,5Heidi M Mansour1,4

Department of Pharmaceutical Sciences-Drug Development Division, University of Kentucky College of Pharmacy, Lexington, KY; 2Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA; 3Analytical Sciences, Product Development, GlaxoSmithKline, King of Prussia, PA; 4Center of Membrane Sciences, University of Kentucky, Lexington, KY, 5Department of Radiation Medicine, University of Kentucky College of Medicine, Lexington, KY, USA

Abstract: Novel advanced spray-dried and co-spray-dried inhalable lung surfactant-mimic phospholipid and poly(ethylene glycol) (PEG)ylated lipopolymers as microparticulate/nanoparticulate dry powders of biodegradable biocompatible lipopolymers were rationally formulated via an organic solution advanced spray-drying process in closed mode using various phospholipid formulations and rationally chosen spray-drying pump rates. Ratios of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine PEG (DPPE-PEG) with varying PEG lengths were mixed in a dilute methanol solution. Scanning electron microscopy images showed the smooth, spherical particle morphology of the inhalable particles. The size of the particles was statistically analyzed using the scanning electron micrographs and SigmaScan® software and were determined to be 600 nm to 1.2 μm in diameter, which is optimal for deep-lung alveolar penetration. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) were performed to analyze solid-state transitions and long-range molecular order, respectively, and allowed for the confirmation of the presence of phospholipid bilayers in the solid state of the particles. The residual water content of the particles was very low, as quantified analytically via Karl Fischer titration. The composition of the particles was confirmed using attenuated total-reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and confocal Raman microscopy (CRM), and chemical imaging confirmed the chemical homogeneity of the particles. The dry powder aerosol dispersion properties were evaluated using the Next Generation Impactor™ (NGI™) coupled with the HandiHaler® dry powder inhaler device, where the mass median aerodynamic diameter from 2.6 to 4.3 μm with excellent aerosol dispersion performance, as exemplified by high values of emitted dose, fine particle fraction, and respirable fraction. Overall, it was determined that the pump rates defined in the spray-drying process had a significant effect on the solid-state particle properties and that a higher pump rate produced the most optimal system. Advanced dry powder inhalers of inhalable lipopolymers for targeted dry powder inhalation delivery were successfully achieved.
Keywords: biocompatible biodegradable lipopolymers, lung surfactant, pulmonary delivery, self-assemblies, solid-state, lipospheres

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF] View Full Text [HTML] 


Readers of this article also read:

Non-adherence to topical treatments for actinic keratosis

Shergill B, Zokaie S, Carr AJ

Patient Preference and Adherence 2014, 8:35-41

Published Date: 17 December 2013

Silymarin-loaded solid nanoparticles provide excellent hepatic protection: physicochemical characterization and in vivo evaluation

Yang KY, Hwang DH, Yousaf AM, Kim DW, Shin YJ, Bae ON, Kim YI, Kim JO, Yong CS, Choi HG

International Journal of Nanomedicine 2013, 8:3333-3343

Published Date: 28 August 2013

Design and physicochemical characterization of advanced spray-dried tacrolimus multifunctional particles for inhalation

Wu X, Hayes D Jr, Zwischenberger JB, Kuhn RJ, Mansour HM

Drug Design, Development and Therapy 2013, 7:59-72

Published Date: 4 February 2013

Development of a novel niosomal system for oral delivery of Ginkgo biloba extract

Jin Y, Wen JY, Garg S, Liu D, Zhou YL, Teng LR, Zhang WY

International Journal of Nanomedicine 2013, 8:421-430

Published Date: 24 January 2013

A novel educational tool for teaching ocular ultrasound

Mustafa MS, Montgomery J, Atta HR

Clinical Ophthalmology 2011, 5:857-860

Published Date: 23 June 2011