Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Nanotechnology for treating osteoporotic vertebral fractures

Authors Gao C, Wei D, Yang H, Chen T, Yang L

Received 19 March 2015

Accepted for publication 11 May 2015

Published 13 August 2015 Volume 2015:10(1) Pages 5139—5157

DOI https://doi.org/10.2147/IJN.S85037

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Prof. Dr. Thomas J Webster

Chunxia Gao,1,* Donglei Wei,1,* Huilin Yang,1 Tao Chen,2 Lei Yang1,3

1Department of Orthopaedic Surgery and Orthopaedic Institute, First Affiliated Hospital, 2Robotics and Microsystems Center, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 3Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China

*These authors contributed equally to this work

Abstract: Osteoporosis is a serious public health problem affecting hundreds of millions of aged people worldwide, with severe consequences including vertebral fractures that are associated with significant morbidity and mortality. To augment or treat osteoporotic vertebral fractures, a number of surgical approaches including minimally invasive vertebroplasty and kyphoplasty have been developed. However, these approaches face problems and difficulties with efficacy and long-term stability. Recent advances and progress in nanotechnology are opening up new opportunities to improve the surgical procedures for treating osteoporotic vertebral fractures. This article reviews the improvements enabled by new nanomaterials and focuses on new injectable biomaterials like bone cements and surgical instruments for treating vertebral fractures. This article also provides an introduction to osteoporotic vertebral fractures and current clinical treatments, along with the rationale and efficacy of utilizing nanomaterials to modify and improve biomaterials or instruments. In addition, perspectives on future trends with injectable bone cements and surgical instruments enhanced by nanotechnology are provided.

Keywords: nanomaterials, osteoporosis, vertebral fracture, kyphoplasty, bone cement, pedicle screw, radiopacifier

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]