Back to Journals » International Journal of Nanomedicine » Volume 7

Nanoparticles and their potential for application in bone

Authors Tautzenberger A, Kovtun, Ignatius

Received 23 May 2012

Accepted for publication 15 June 2012

Published 17 August 2012 Volume 2012:7 Pages 4545—4557


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Andrea Tautzenberger, Anna Kovtun, Anita Ignatius

Institute of Orthopedic Research and Biomechanics, Centre of Musculoskeletal Research, Ulm University, Ulm, Germany

Abstract: Biomaterials are commonly applied in regenerative therapy and tissue engineering in bone, and have been substantially refined in recent years. Thereby, research approaches focus more and more on nanoparticles, which have great potential for a variety of applications. Generally, nanoparticles interact distinctively with bone cells and tissue, depending on their composition, size, and shape. Therefore, detailed analyses of nanoparticle effects on cellular functions have been performed to select the most suitable candidates for supporting bone regeneration. This review will highlight potential nanoparticle applications in bone, focusing on cell labeling as well as drug and gene delivery. Labeling, eg, of mesenchymal stem cells, which display exceptional regenerative potential, makes monitoring and evaluation of cell therapy approaches possible. By including bioactive molecules in nanoparticles, locally and temporally controlled support of tissue regeneration is feasible, eg, to directly influence osteoblast differentiation or excessive osteoclast behavior. In addition, the delivery of genetic material with nanoparticulate carriers offers the possibility of overcoming certain disadvantages of standard protein delivery approaches, such as aggregation in the bloodstream during systemic therapy. Moreover, nanoparticles are already clinically applied in cancer treatment. Thus, corresponding efforts could lead to new therapeutic strategies to improve bone regeneration or to treat bone disorders.

Keywords: nanoparticles, applications, bone, cell labeling, drug delivery, gene delivery

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Readers of this article also read:

Is increasing the dose of Entecavir effective in partial virological responders?

Erturk A, Adnan Akdogan R, Parlak E, Cure E, Cumhur Cure M, Ozturk C

Drug Design, Development and Therapy 2014, 8:621-625

Published Date: 29 May 2014

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010