Back to Journals » International Journal of Nanomedicine » Volume 7

Nanofiber composites containing N-heterocyclic carbene complexes with antimicrobial activity

Authors Zhatahry A , Al-Enizi AM, ElSayed EA , Butorac R, Al-Deyab SS, Wadaan M, Cowley AH

Received 15 March 2012

Accepted for publication 10 April 2012

Published 7 June 2012 Volume 2012:7 Pages 2829—2832

DOI https://doi.org/10.2147/IJN.S31810

Review by Single anonymous peer review

Peer reviewer comments 3



Ahmed A Elzatahry1,4, Abdullah M Al-Enizi1, Elsayed Ahmed Elsayed2,5, Rachel R Butorac3, Salem S Al-Deyab1, Mohammad AM Wadaan2, Alan H Cowley3

1Petrochemical Research Chair, Department of Chemistry, 2Chair of Advanced Proteomics & Cytomics Research, Faculty of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia; 3Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, USA; 4Institute of Advanced Technology and New Materials, City for Scientific Research and Technology Applications, New Borg Alrab, Alexandria, Egypt; 5Natural & Microbial Products Department, National Research Centre, Dokki, Cairo, Egypt

Abstract: This report concerns nanofiber composites that incorporate N-heterocyclic carbenes and the use of such composites for testing antimicrobial and antifungal activities. The nanofiber composites were produced by electrospinning mixtures of the gold chloride or gold acetate complexes of a bis(imino)acenaphthene (BIAN)-supported NHC with aqueous solutions of polyvinyl alcohol (PVA). The products were characterized by scanning-electron microscopy, which revealed that nanofibers in the range of 250–300 nm had been produced. The biological activities of the nanofiber composites were tested against two Gram-positive bacteria, six Gram-negative bacteria, and two fungal strains. No activity was evident against the fungal strains. However, the gold chloride complex was found to be active against all the Gram-positive pathogens and one of the Gram-negative pathogens. It was also found that the activity of the produced nanofibers was localized and that no release of the bioactive compound from the nanofibers was evident. The demonstrated antimicrobial activities of these novel nanofiber composites render them potentially useful as wound dressings.
Keywords: nanofiber, electrospinning, N-Heterocyclic carbene, biopolymer, antimicrobial

Creative Commons License © 2012 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.