Back to Journals » International Journal of Nanomedicine » Volume 6

Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocamus of Wistar rats

Authors Han D, Tian Y, Zhang T, Ren G, Yang Z

Published 11 July 2011 Volume 2011:6 Pages 1453—1461

DOI https://doi.org/10.2147/IJN.S18507

Review by Single-blind

Peer reviewer comments 3

Dadong Han1, Yutao Tian2, Tao Zhang2, Guogang Ren3, Zhuo Yang1
1
School of Medicine, The Key Laboratory of Bioactive Materials, Ministry of Education, 2College of Life Science, Nankai University, Tianjin, China; 3Science and Technology Research Institute, University of Hertfordshire, Hatfield, Hertfordshire, UK

Abstract: This study focused on the effects of zinc oxide nanoparticles (nano-ZnO) on spatial learning and memory and synaptic plasticity in the hippocampus of young rats, and tried to interpret the underlying mechanism. Rats were randomly divided into four groups. Nano-ZnO and phosphate-buffered saline were administered in 4-week-old rats for 8 weeks. Subsequently, performance in Morris water maze (MWM) was determined, and then long-term potentiation (LTP) and depotentiation were measured in the perforant pathway to dentate gyrus (DG) in anesthetized rats. The data showed that, (1) in MWM, the escape latency was prolonged in the nano-ZnO group and, (2) LTP was significantly enhanced in the nano-ZnO group, while depotentiation was barely influenced in the DG region of the nano-ZnO group. This bidirectional effect on long-term synaptic plasticity broke the balance between stability and flexibility of cognition. The spatial learning and memory ability was attenuated by the alteration of synaptic plasticity in nano-ZnO-treated rats.

Keywords: zinc oxide nanoparticles, synaptic plasticity, long-term potentiation, depotentiation, spatial learning, memory

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Synthesis and characterization of low-toxicity N-caprinoyl-N-trimethyl chitosan as self-assembled micelles carriers for osthole

Hu XJ, Liu Y, Zhou XF, Zhu QL, Bei YY, You BG, Zhang CG, Chen WL, Wang ZL, Zhu AJ, Zhang XN, Fan YJ

International Journal of Nanomedicine 2013, 8:3543-3558

Published Date: 20 September 2013

Encapsulation of cisplatin in long-circulating and pH-sensitive liposomes improves its antitumor effect and reduces acute toxicity

Leite EA, Souza CM, Carvalho-Júnior AD, Coelho LG, Lana AM, Cassali GD, Oliveira MC

International Journal of Nanomedicine 2012, 7:5259-5269

Published Date: 9 October 2012

Targeted delivery of tissue plasminogen activator by binding to silica-coated magnetic nanoparticle

Chen JP, Yang PC, Ma YH, Tu SJ, Lu YJ

International Journal of Nanomedicine 2012, 7:5137-5149

Published Date: 27 September 2012

Lipid nanoparticles as delivery vehicles for the Parietaria judaica major allergen Par j 2

Bondì ML, Montana G, Craparo EF, Di Gesù R, Giammona G, Bonura A, Colombo P

International Journal of Nanomedicine 2011, 6:2953-2962

Published Date: 21 November 2011

PLLA-PEG-TCH-labeled bioactive molecule nanofibers for tissue engineering

Chen J, Zhou B, Li Q, Ouyang J, Kong J, Zhong W, Xing MM

International Journal of Nanomedicine 2011, 6:2533-2542

Published Date: 21 October 2011

Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles

Chen Y, Wan Y, Wang Y, Zhang H, Jiao Z

International Journal of Nanomedicine 2011, 6:2321-2326

Published Date: 18 October 2011

Phase I dose escalation safety study of nanoparticulate paclitaxel (CTI 52010) in normal dogs

Axiak SM, Selting KA, Decedue CJ, Henry CJ, Tate D, Howell J, Bilof KJ, Kim DY

International Journal of Nanomedicine 2011, 6:2205-2212

Published Date: 11 October 2011

Design, modeling, expression, and chemoselective PEGylation of a new nanosize cysteine analog of erythropoietin

Ahangari Cohan R, Madadkar-Sobhani A, Khanahmad H, Roohvand F, Aghasadeghi MR, Hedayati MH, Barghi Z, Shafiee Ardestani M, Nouri Inanlou D, Norouzian D

International Journal of Nanomedicine 2011, 6:1217-1227

Published Date: 15 June 2011

The role of eye size in its pressure and motility

Harry H Mark

Clinical Ophthalmology 2007, 1:105-109

Published Date: 15 September 2007