Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Multinucleation and cell dysfunction induced by amorphous silica nanoparticles in an L-02 human hepatic cell line

Authors Wang W, Li Y, Liu X, Jin M, Du H, Liu Y, Huang P, Zhou X, Yuan L, Sun Z

Received 13 April 2013

Accepted for publication 24 May 2013

Published 19 September 2013 Volume 2013:8(1) Pages 3533—3541

DOI https://doi.org/10.2147/IJN.S46732

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Wen Wang,1–3,* Yang Li,1–3,* Xiaomei Liu,3 Minghua Jin,3 Haiying Du,3 Ying Liu,3 Peili Huang,1,2 Xianqing Zhou,1,2 Lan Yuan,4 Zhiwei Sun1–3

1School of Public Health, Capital Medical University, Beijing, 2Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 3School of Public Health, Jilin University, Changchun, Jilin, 4Medical and Healthy Analysis Centre, Peking University, Beijing, People's Republic of China

*These authors contributed equally to this work

Abstract: Silica nanoparticles (SNPs) are one of the most important nanomaterials, and have been widely used in a variety of fields. Therefore, their effects on human health and the environment have been addressed in a number of studies. In this work, the effects of amorphous SNPs were investigated with regard to multinucleation in L-02 human hepatic cells. Our results show that L-02 cells had an abnormally high incidence of multinucleation upon exposure to silica, that increased in a dose-dependent manner. Propidium iodide staining showed that multinucleated cells were arrested in G2/M phase of the cell cycle. Increased multinucleation in L-02 cells was associated with increased generation of cellular reactive oxygen species and mitochondrial damage on flow cytometry and confocal microscopy, which might have led to failure of cytokinesis in these cells. Further, SNPs inhibited cell growth and induced apoptosis in exposed cells. Taken together, our findings demonstrate that multinucleation in L-02 human hepatic cells might be a failure to undergo cytokinesis or cell fusion in response to SNPs, and the increase in cellular reactive oxygen species could be responsible for the apoptosis seen in both mononuclear cells and multinucleated cells.

Keywords: silica nanoparticles, human hepatic cell L-02, multinucleation, cell cycle, cell dysfunction, apoptosis

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]