Back to Journals » Nature and Science of Sleep » Volume 13

Multi-Night Validation of a Sleep Tracking Ring in Adolescents Compared with a Research Actigraph and Polysomnography

Authors Chee NIYN, Ghorbani S, Golkashani HA, Leong RLF, Ong JL, Chee MWL

Received 10 October 2020

Accepted for publication 19 December 2020

Published 15 February 2021 Volume 2021:13 Pages 177—190

DOI https://doi.org/10.2147/NSS.S286070

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Professor Steven A Shea


Nicholas IYN Chee,* Shohreh Ghorbani,* Hosein Aghayan Golkashani, Ruth LF Leong, Ju Lynn Ong, Michael WL Chee

Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

*These authors contributed equally to this work

Correspondence: Michael WL Chee
Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, MD1 Level 13 Rm 05B, National University of Singapore, 117549, Singapore
Tel +65 66013199
Email michael.chee@nus.edu.sg

Background: Wearable devices have tremendous potential for large-scale longitudinal measurement of sleep, but their accuracy needs to be validated. We compared the performance of the multisensor Oura ring (Oura Health Oy, Oulu, Finland) to polysomnography (PSG) and a research actigraph in healthy adolescents.
Methods: Fifty-three adolescents (28 females; aged 15– 19 years) underwent overnight PSG monitoring while wearing both an Oura ring and Actiwatch 2 (Philips Respironics, USA). Measurements were made over multiple nights and across three levels of sleep opportunity (5 nights with either 6.5 or 8h, and 3 nights with 9h). Actiwatch data at two sensitivity settings were analyzed. Discrepancies in estimated sleep measures as well as sleep-wake, and sleep stage agreements were evaluated using Bland–Altman plots and epoch-by-epoch (EBE) analyses.
Results: Compared with PSG, Oura consistently underestimated TST by an average of 32.8 to 47.3 minutes (Ps < 0.001) across the different TIB conditions; Actiwatch 2 at its default setting underestimated TST by 25.8 to 33.9 minutes. Oura significantly overestimated WASO by an average of 30.7 to 46.3 minutes. It was comparable to Actiwatch 2 at default sensitivity in the 6.5, and 8h TIB conditions. Relative to PSG, Oura significantly underestimated REM sleep (12.8 to 19.5 minutes) and light sleep (51.1 to 81.2 minutes) but overestimated N3 by 31.5 to 46.8 minutes (Ps < 0.01). EBE analyses demonstrated excellent sleep-wake accuracies, specificities, and sensitivities – between 0.88 and 0.89 across all TIBs.
Conclusion: The Oura ring yielded comparable sleep measurement to research grade actigraphy at the latter’s default settings. Sleep staging needs improvement. However, the device appears adequate for characterizing the effect of sleep duration manipulation on adolescent sleep macro-architecture.

Keywords: validation, adolescents, wearable, polysomnography, actigraphy

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]