Back to Journals » International Journal of Nanomedicine » Volume 7

Modification of polyethylene glycol onto solid lipid nanoparticles encapsulating a novel chemotherapeutic agent (PK-L4) to enhance solubility for injection delivery

Authors Fang YP, Wu PC, Huang YB, Tzeng CC, Chen YL, Hung YH, Tsai MJ, Tsai YH

Received 27 May 2012

Accepted for publication 9 July 2012

Published 17 September 2012 Volume 2012:7 Pages 4995—5005

DOI https://doi.org/10.2147/IJN.S34301

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Yi-Ping Fang,1 Pao-Chu Wu,2 Yaw-Bin Huang,3 Cherng-Chyi Tzeng,4 Yeh-Long Chen,4 Yu-Han Hung,2 Ming-Jun Tsai,5,6 Yi-Hung Tsai3

1
Department of Biotechnology, Yuanpei University, Hsinchu, Taiwan; 2School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; 3Graduate Institute of Clinical Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; 4School of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; 5Department of Neurology, China Medical University Hospital, Taichung, Taiwan; 6School of Medicine, Medical College, China Medical University, Taichung, Taiwan

Background: The synthetic potential chemotherapeutic agent 3-Chloro-4-[(4-methoxyphenyl)amino]furo[2,3-b]quinoline (PK-L4) is an analog of amsacrine. The half-life of PK-L4 is longer than that of amsacrine; however, PK-L4 is difficult to dissolve in aqueous media, which is problematic for administration by intravenous injection.
Aims: To utilize solid lipid nanoparticles (SLNs) modified with polyethylene glycol (PEG) to improve the delivery of PK-L4 and investigate its biodistribution behavior after intravenous administration.
Results: The particle size of the PK-L4-loaded SLNs was 47.3 nm and the size of the PEGylated form was smaller, at 28 nm. The entrapment efficiency (EE%) of PK-L4 in SLNs with and without PEG showed a high capacity of approximately 100% encapsulation. Results also showed that the amount of PK-L4 released over a prolonged period from SLNs both with and without PEG was comparable to the non-formulated group, with 16.48% and 30.04%, respectively, of the drug being released, which fit a zero-order equation. The half-maximal inhibitory concentration values of PK-L4-loaded SLNs with and those without PEG were significantly reduced by 45%–64% in the human lung carcinoma cell line (A549), 99% in the human breast adenocarcinoma cell line with estrogen receptor (MCF7), and 95% in the human breast adenocarcinoma cell line (MDA-MB-231). The amount of PK-L4 released by SLNs with PEG was significantly higher than that from the PK-L4 solution (P < 0.05). After intravenous bolus of the PK-L4-loaded SLNs with PEG, there was a marked significant difference in half-life alpha (0.136 ± 0.046 hours) when compared with the PK-L4 solution (0.078 ± 0.023 hours); also the area under the curve from zero to infinity did not change in plasma when compared to the PK-L4 solution. This demonstrated that PK-L4-loaded SLNs were rapidly distributed from central areas to tissues and exhibited higher accumulation in specific organs. The highest deposition of PK-L4-loaded SLNs with PEG was found in the lung and spine.
Conclusion: Sufficient amounts of PK-L4 were entrapped in the SLNs, and the pharmacokinetic behavior of PK-L4-loaded SLNs was established. This formulation successfully resolved the delivery problem, and the drug was localized in particular organs.

Keywords: 3-chloro-4-[(4-methoxyphenyl)amino]furo[2,3-b]quinoline, SLNs, solubility, cytotoxicity, biodistribution

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Second case report of successful electroconvulsive therapy for a patient with schizophrenia and severe hemophilia A

Saito N, Shioda K, Nisijima K, Kobayashi T, Kato S

Neuropsychiatric Disease and Treatment 2014, 10:865-867

Published Date: 16 May 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012