Back to Journals » International Journal of Nanomedicine » Volume 7

Minimally invasive cell-seeded biomaterial systems for injectable/epicardial implantation in ischemic heart disease

Authors Ravichandran R, Venugopal JR, Sundarrajan, Mukherjee, Ramakrishna S

Received 31 August 2012

Accepted for publication 8 October 2012

Published 13 December 2012 Volume 2012:7 Pages 5969—5994


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Rajeswari Ravichandran,1,2 Jayarama Reddy Venugopal,1 Subramanian Sundarrajan,1,2 Shayanti Mukherjee,1 Seeram Ramakrishna1,2

Healthcare and Energy Materials Laboratory, 2Department of Mechanical Engineering, National University of Singapore, Singapore

Abstract: Myocardial infarction (MI) is characterized by heart-wall thinning, myocyte slippage, and ventricular dilation. The injury to the heart-wall muscle after MI is permanent, as after an abundant cell loss the myocardial tissue lacks the intrinsic capability to regenerate. New therapeutics are required for functional improvement and regeneration of the infarcted myocardium, to overcome harmful diagnosis of patients with heart failure, and to overcome the shortage of heart donors. In the past few years, myocardial tissue engineering has emerged as a new and ambitious approach for treating MI. Several left ventricular assist devices and epicardial patches have been developed for MI. These devices and acellular/cellular cardiac patches are employed surgically and sutured to the epicardial surface of the heart, limiting the region of therapeutic benefit. An injectable system offers the potential benefit of minimally invasive release into the myocardium either to restore the injured extracellular matrix or to act as a scaffold for cell delivery. Furthermore, intramyocardial injection of biomaterials and cells has opened new opportunities to explore and also to augment the potentials of this technique to ease morbidity and mortality rates owing to heart failure. This review summarizes the growing body of literature in the field of myocardial tissue engineering, where biomaterial injection, with or without simultaneous cellular delivery, has been pursued to enhance functional and structural outcomes following MI. Additionally, this review also provides a complete outlook on the tissue-engineering therapies presently being used for myocardial regeneration, as well as some perceptivity into the possible issues that may hinder its progress in the future.

Keywords: cardiac-tissue engineering, injectable system, myocardial infarction, biomaterials

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]