Back to Journals » OncoTargets and Therapy » Volume 6

MicroRNA-205 downregulates mixed-lineage-AF4 oncogene expression in acute lymphoblastic leukemia

Authors Dou L, Li J, Zheng D, Li Y, Gao X, Xu C, Gao L, Wang L, Yu L, Qi J

Received 18 March 2013

Accepted for publication 22 July 2013

Published 26 August 2013 Volume 2013:6 Pages 1153—1160

DOI https://doi.org/10.2147/OTT.S45376

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3


Liping Dou,1,* Jingxin Li,1,* Dehua Zheng,2,* Yonghui Li,1 Xiaoning Gao,1 Chengwang Xu,1 Li Gao,1 Lili Wang,1 Li Yu1

1Department of Hematology, Chinese PLA General Hospital, Beijing, People's Republic of China; 2Department of Hepatobiliary Surgery, Organ Transplant Center, Chinese PLA 309th Hospital, Beijing, People's Republic of China

*These authors contributed equally to this work

Abstract: Myeloid/lymphoid or mixed-lineage AF4 acute lymphoblastic leukemia (MLL-AF4 ALL) is a pediatric leukemia that occurs rarely in adults. MLL-AF4 ALL is typically characterized by the presence of chromosomal translocation (t(4;11)(q21;q23)), leading to expression of MLL-AF4 fusion protein. Although MLL-AF4 fusion protein triggers a molecular pathogenesis and hematological presentations that are unique to leukemias, the precise role of this oncogene in leukemogenesis remains unclear. Previous studies have indicated that microRNAs (miRs) might modulate the expression of MLL-AF4 ALL fusion protein, thereby suggesting the involvement of miR in progression or suppression of MLL-AF4 ALL. We have previously demonstrated that miR-205 negatively regulates transcription of an MLL-AF4 luciferase reporter. Here, we report that exogenous expression of miR-205 in MLL-AF4 human cell lines (RS4;11 and MV4-11) inversely regulates the expression of MLL-AF4 at both messenger RNA (mRNA) and protein level. Furthermore, miR-205 significantly induced apoptosis in MLL-AF4 cells as evidenced by Annexin V staining using fluorescence-activated cell sorting (FACS) analysis. The proliferative capacity of leukemic cells was suppressed by miR-205. The addition of an miR-205 inhibitor was able to restore the observed effects. In conclusion, these findings demonstrate that miR-205 may have potential value as a novel therapeutic agent in the treatment of MLL-AF4 ALL.

Keywords: miR-205, MLL-AF4, leukemia, microRNA, oncogene expression, untranslated regions, proliferation

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]