Back to Journals » International Journal of Chronic Obstructive Pulmonary Disease » Volume 13

Microbiological airway colonization in COPD patients with severe emphysema undergoing endoscopic lung volume reduction

Authors Trudzinski FC, Seiler F, Wilkens H, Metz C, Kamp A, Bals R, Gärtner B, Lepper PM, Becker SL

Received 2 September 2017

Accepted for publication 16 October 2017

Published 19 December 2017 Volume 2018:13 Pages 29—35

DOI https://doi.org/10.2147/COPD.S150705

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Charles Downs

Peer reviewer comments 3

Editor who approved publication: Dr Richard Russell


Franziska C Trudzinski,1 Frederik Seiler,1 Heinrike Wilkens,1 Carlos Metz,1 Annegret Kamp,1 Robert Bals,1 Barbara Gärtner,2 Philipp M Lepper,1 Sören L Becker2–4

1Department of Internal Medicine V – Pneumology, Allergology and Critical Care Medicine, ECLS Center Saar, University Medical Center Saarland and Saarland University, 2Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany; 3Swiss Tropical and Public Health Institute, 4University of Basel, Basel, Switzerland

Background: Endoscopic lung volume reduction (eLVR) is a therapeutic option for selected patients with COPD and severe emphysema. Infectious exacerbations are serious events in these vulnerable patients; hence, prophylactic antibiotics are often prescribed postinterventionally. However, data on the microbiological airway colonization at the time of eLVR are scarce, and there are no evidence-based recommendations regarding a rational antibiotic regimen.
Objective: The aim of this study was to perform a clinical and microbiological analysis of COPD patients with advanced emphysema undergoing eLVR with endobronchial valves at a single German University hospital, 2012–2017.
Patients and methods: Bronchial aspirates were obtained prior to eLVR and sent for microbiological analysis. Antimicrobial susceptibility testing of bacterial isolates was performed, and pathogen colonization was retrospectively compared with clinical parameters.
Results: At least one potential pathogen was found in 47% (30/64) of patients. Overall, Gram-negative bacteria constituted the most frequently detected pathogens. The single most prevalent species were Haemophilus influenzae (9%), Streptococcus pneumoniae (6%), and Staphylococcus aureus (6%). No multidrug resistance was observed, and Pseudomonas aeruginosa occurred in <5% of samples. Patients without microbiological airway colonization showed more severe airflow limitation, hyperinflation, and chronic hypercapnia compared to those with detected pathogens.
Conclusion: Microbiological airway colonization was frequent in patients undergoing eLVR but not directly associated with poorer functional status. Resistance testing results do not support the routine use of antipseudomonal antibiotics in these patients.

Keywords: COPD, endoscopic lung volume reduction, emphysema, Haemophilus influenzae, Pseudomonas aeruginosa, resistance

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]