Back to Journals » Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy » Volume 14

Metabolic and Energy Imbalance in Dysglycemia-Based Chronic Disease

Authors Kalra S, Unnikrishnan AG, Baruah MP, Sahay R, Bantwal G

Received 15 October 2020

Accepted for publication 2 December 2020

Published 15 January 2021 Volume 2021:14 Pages 165—184

DOI https://doi.org/10.2147/DMSO.S286888

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Antonio Brunetti


Sanjay Kalra,1,2 Ambika Gopalakrishnan Unnikrishnan,3 Manash P Baruah,4 Rakesh Sahay,5 Ganapathi Bantwal6

1Department of Endocrinology, Bharti Hospital, Karnal, India; 2Department of Endocrinology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India; 3Department of Endocrinology and Diabetes, Chellaram Diabetes Institute, Pune, Maharashtra, India; 4Department of Endocrinology, Excel Hospitals, Guwahati, India; 5Department of Endocrinology, Osmania Medical College, Hyderabad, Telangana, India; 6Department of Endocrinology, St. John’s Medical College and Hospital, Bangalore, Karnataka, India

Correspondence: Sanjay Kalra
Bharti Hospital, Kunjpura Road, Karnal, 132001 Haryana, India
Tel +919896048555
Email brideknl@gmail.com

Abstract: Metabolic flexibility is the ability to efficiently adapt metabolism based on nutrient availability and requirement that is essential to maintain homeostasis in times of either caloric excess or restriction and during the energy-demanding state. This regulation is orchestrated in multiple organ systems by the alliance of numerous metabolic pathways under the master control of the insulin-glucagon-sympathetic neuro-endocrine axis. This, in turn, regulates key metabolic enzymes and transcription factors, many of which interact closely with and culminate in the mitochondrial energy generation machinery. Metabolic flexibility is compromised due to the continuous mismatch between availability and intake of calorie-dense foods and reduced metabolic demand due to sedentary lifestyle and age-related metabolic slowdown. The resultant nutrient overload leads to mitochondrial trafficking of substrates manifesting as mitochondrial dysfunction characterized by ineffective substrate switching and incomplete substrate utilization. At the systemic level, the manifestation of metabolic inflexibility comprises reduced skeletal muscle glucose disposal rate, impaired suppression of hepatic gluconeogenesis and adipose tissue lipolysis manifesting as insulin resistance. This is compounded by impaired β-cell function and progressively reduced β-cell mass. A consequence of insulin resistance is the upregulation of the mitogen-activated protein kinase pathway leading to a pro-hypertensive, atherogenic, and thrombogenic environment. This is further aggravated by oxidative stress, advanced glycation end products, and inflammation, which potentiates the risk of micro- and macro-vascular complications. This review aims to elucidate underlying mechanisms mediating the onset of metabolic inflexibility operating at the main target organs and to understand the progression of metabolic diseases. This could potentially translate into a pharmacological tool that can manage multiple interlinked conditions of dysglycemia, hypertension, and dyslipidemia by restoring metabolic flexibility. We discuss the breadth and depth of metabolic flexibility and its impact on health and disease.

Keywords: metabolic flexibility, DBCD, insulin resistance, prediabetes, diabetes, microvascular and macrovascular complication

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]