Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Mechanisms of microemulsion enhancing the oral bioavailability of puerarin: comparison between oil-in-water and water-in-oil microemulsions using the single-pass intestinal perfusion method and a chylomicron flow blocking approach

Authors Tang T, Hu X, Liao D, Liu X, Xiang D

Received 13 July 2013

Accepted for publication 28 August 2013

Published 19 November 2013 Volume 2013:8(1) Pages 4415—4426


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Tian-Tian Tang,1,2,3 Xiong-Bin Hu,1,2,3 De-Hua Liao,1,2,3 Xin-Yi Liu,1,2,3 Da-Xiong Xiang1,2,3

1Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China; 2Institute of Clinical Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China; 3Key Laboratory for New Technology of Chinese Medicine Preparations of Hunan Province, Changsha, People's Republic of China

Abstract: The purpose of the present work was to determine the mechanisms by which microemulsions (MEs) enhance the oral bioavailability of puerarin. The in situ perfusion method was used in rats to study the absorption mechanisms of an oil-in-water (O/W) microemulsion (O/W-ME) and a water-in-oil (W/O) microemulsion (W/O-ME). The possibility of lymphatic transport of the MEs was investigated using a chylomicron flow blocking approach. The results for the absorption mechanisms in the stomach and intestines indicated that the absorption characteristics of the O/W-ME and W/O-ME depend on the segment. The W/O-ME had higher internal membrane permeability than the O/W-ME. The results of the lymphatic transport analyses showed that both the O/W-ME and W/O-ME underwent lymphatic transport and that this pathway was a major contributor to the oral bioavailability of MEs. Furthermore, the type of ME can significantly affect the absorption of puerarin through the lymphatic system due to the oil content and the form of the microemulsion after oral administration. In conclusion, these data indicate that microemulsions are an effective and promising delivery system to enhance the oral bioavailability of poorly water-soluble drugs.

Keywords: microemulsion, lymphatic transport, oral bioavailability, chylomicron

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]