Back to Journals » Therapeutics and Clinical Risk Management » Volume 6

Maximum opening of the mouth by mouth prop during dental procedures increases the risk of upper airway constriction

Authors Hiroshi Ito, Hiroyoshi Kawaai, Shinya Yamazaki, et al

Published 12 May 2010 Volume 2010:6 Pages 239—248

DOI https://doi.org/10.2147/TCRM.S10187

Review by Single-blind

Peer reviewer comments 4

Hiroshi Ito1, Hiroyoshi Kawaai1, Shinya Yamazaki1, Yosuke Suzuki2

1Division of Systemic Management, Department of Oral Function, 2Division of Radiology and Diagnosis, Department of Medical Sciences, Ohu University, Post Graduate School of Dentistry, Koriyama City, Fukushima Prefecture, Japan

Abstract: From a retrospective evaluation of data on accidents and deaths during dental procedures, it has been shown that several patients who refused dental treatment died of asphyxia during dental procedures. We speculated that forcible maximum opening of the mouth by using a mouth prop triggers this asphyxia by affecting the upper airway. Therefore, we assessed the morphological changes of the upper airway following maximal opening of the mouth. In 13 healthy adult volunteers, the sagittal diameter of the upper airway on lateral cephalogram was measured between the two conditions; closed mouth and maximally open mouth. The dyspnea in each state was evaluated by a visual analog scale. In one subject, a computed tomograph (CT) was taken to assess the three-dimensional changes in the upper airway. A significant difference was detected in the mean sagittal diameter of the upper airway following use of the prop (closed mouth: 18.5 ± 3.8 mm, maximally open mouth: 10.4 ± 3.0 mm). All subjects indicated upper airway constriction and significant dyspnea when their mouth was maximally open. Although a CT scan indicated upper airway constriction when the mouth was maximally open, muscular compensation was admitted. Our results further indicate that the maximal opening of the mouth narrows the upper airway diameter and leads to dyspnea. The use of a prop for the patient who has communication problems or poor neuromuscular function can lead to asphyxia. When the prop is used for patient refusal in dentistry, the respiratory condition should be monitored strictly, and it should be kept in mind that the “sniffing position” is effective for avoiding upper airway constriction. Practitioners should therefore consider applying not only systematic desensitization, but also general anesthesia to the patient who refuses treatment, because the safety of general anesthesia has advanced, and general anesthesia may be safer than the use of a prop and restraints.

Keywords: mouth prop, dental procedure, upper airway constriction, asphyxia, maximum opening of the mouth, risk management

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF] 

 

Other articles by this author:

Effects of a transmitted light device for pediatric peripheral venipuncture and intravenous cannulation

Yamazaki S, Tomita S, Watanabe M, Kawaai H, Shimamura K

Medical Devices: Evidence and Research 2011, 4:189-192

Published Date: 4 October 2011

Availability of a remote online hemodynamic monitoring system during treatment in a private dental office for medically high-risk patients

Shinya Yamazaki, Hiroyoshi Kawaai, Shigeo Sasaki, Kazuhiro Shimamura, Hiroshi Segawa, Takahiro Saito

Therapeutics and Clinical Risk Management 2008, 4:721-726

Published Date: 8 August 2008

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010