Back to Journals » Therapeutics and Clinical Risk Management » Volume 11

Management of patients with type 2 diabetes and mild/moderate renal impairment: profile of linagliptin

Authors Gallwitz B

Received 27 March 2015

Accepted for publication 15 April 2015

Published 14 May 2015 Volume 2015:11 Pages 799—805


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Professor Garry Walsh

Baptist Gallwitz

Department of Medicine IV, Eberhard-Karls University, Tübingen, Germany

Abstract: Dipeptidyl-peptidase-IV (DPP-4) inhibitors are oral antidiabetic agents that can be administered as monotherapy in patients with contraindications to metformin or metformin intolerance, and in combination with other oral compounds and/or insulin. DPP-4 inhibitors act in a glucose-dependent manner and only increase insulin secretion and inhibit glucagon secretion under hyperglycemic conditions. Renal impairment is frequent in type 2 diabetes as a result of microvascular complications and diabetes treatment, and options in these patients are limited. Linagliptin is a DPP-4 inhibitor with a hepatobiliary route of elimination. In comparative studies, it was noninferior to metformin and sulfonylureas in lowering glycated hemoglobin (HbA1c) and improving glycemic parameters. It can be used throughout all stages of renal impairment without dose adjustments. This review gives an overview of linagliptin in various stages of chronic kidney disease and has a focus on efficacy and safety parameters from clinical studies in patients with impaired renal function. These data are interpreted in the context of type 2 diabetes therapy in general.

Keywords: type 2 diabetes, renal impairment, oral antidiabetic drugs, incretin based therapies, DPP-4 inhibitors, linagliptin

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010