Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Magnetic removal of Entamoeba cysts from water using chitosan oligosaccharide-coated iron oxide nanoparticles

Authors Shukla S, Arora V, Jadaun A, Kumar J, Singh N, Jain V

Received 18 November 2014

Accepted for publication 22 January 2015

Published 31 July 2015 Volume 2015:10(1) Pages 4901—4917


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Prof. Dr. Thomas J. Webster

Sudeep Shukla,1 Vikas Arora,2 Alka Jadaun,3 Jitender Kumar,1 Nishant Singh,1 Vinod Kumar Jain1

1School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India; 2Department of Chemistry, Indian Institute of Technology, New Delhi, Delhi, India; 3School of Biotechnology, Jawaharlal Nehru University, New Delhi, Delhi, India

Abstract: Amebiasis, a major health problem in developing countries, is the second most common cause of death due to parasitic infection. Amebiasis is usually transmitted by the ingestion of Entamoeba histolytica cysts through oral–fecal route. Herein, we report on the use of chitosan oligosaccharide-functionalized iron oxide nanoparticles for efficient capture and removal of pathogenic protozoan cysts under the influence of an external magnetic field. These nanoparticles were synthesized through a chemical synthesis process. The synthesized particles were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and zeta potential analysis. The particles were found to be well dispersed and uniform in size. The capture and removal of pathogenic cysts were demonstrated by fluorescent microscopy, transmission electron microscopy, and scanning electron microscopy (SEM). Three-dimensional modeling of various biochemical components of cyst walls, and thereafter, flexible docking studies demonstrate the probable interaction mechanism of nanoparticles with various components of E. histolytica cyst walls. Results of the present study suggest that E. histolytica cysts can be efficiently captured and removed from contaminated aqueous systems through the application of synthesized nanoparticles.

Keywords: amebiasis, water treatment, nanotechnology

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]