Back to Journals » International Journal of Nanomedicine » Volume 5

Magnetic Fe3O4 nanoparticles and chemotherapy agents interact synergistically to induce apoptosis in lymphoma cells

Authors Jing H, Wang J, Yang, Ke X, Guohua X, Chen B

Published 19 November 2010 Volume 2010:5 Pages 999—1004

DOI https://doi.org/10.2147/IJN.S14957

Review by Single anonymous peer review

Peer reviewer comments 3



Hongmei Jing1, Jing Wang1, Ping Yang1, Xiaoyan Ke1, Guohua Xia2, Baoan Chen2
1Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, People’s Republic of China; 2Department of Hematology, The Affiliated Zhongda Hospital, Clinical Medical School, Southeast University, Nanjing, People’s Republic of China

Abstract: The purpose of this study was to investigate the potential effects of combination therapy using magnetic nanoparticles of Fe3O4 (MNP-Fe3O4) and chemotherapeutic drugs on lymphoma cells. Proliferation, inhibition, and viability of Raji cells were detected by MTT and trypan blue exclusion. The percentage of cells undergoing apoptosis was detected by flow cytometry using fluorescein isothiocyanate-annexin V and propidium iodide staining. p53 and nuclear factor-κB (NF-κB) protein levels were measured by Western blot. The results showed that proliferation of Raji cells was inhibited by adriamycin or daunorubicin in a dose-and time-dependent manner. Cell sensitivity was improved and the 50% inhibitory concentrations of adriamycin and daunorubicin decreased when combined with a MNP-Fe3O4 carrier. Interestingly, increased apoptosis in Raji lymphoma cells was accompanied by upregulation of p53 protein and downregulation of NF-κB protein. Furthermore, the combination of MNP-Fe3O4 with adriamycin or daunorubicin increased p53 protein levels and decreased NF-κB protein levels more than adriamycin or daunorubicin alone, indicating that MNP-Fe3O4 could enhance the effect of chemotherapeutic drugs on p53 and NF-κB. Similar results for cell apoptosis and protein expression were not observed for the groups treated with dexamethasone ± MNP-Fe3O4 (P >0.05). These findings suggest a potential clinical application for MNP-Fe3O4 in combination with daunorubicin or adriamycin in the treatment of lymphoma.

Keywords: magnetic nanoparticles, Raji cells, apoptosis, p53, NF-κB

Creative Commons License © 2010 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.