Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Lubricin as a novel nanostructured protein coating to reduce fibroblast density

Authors Aninwene II GE, Yang Z, Ravi V, Jay G, Webster T

Received 23 October 2013

Accepted for publication 17 December 2013

Published 25 June 2014 Volume 2014:9(1) Pages 3131—3135

DOI https://doi.org/10.2147/IJN.S56439

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3


George Ejiofor Aninwene II,1 Zifan Yang,2 Vishnu Ravi,3 Gregory D Jay,2,4 Thomas J Webster1,5

1Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA; 2School of Engineering, Brown University, Providence, RI, USA; 3Albany Medical College, Albany, NY, USA; 4Department of Emergency Medicine, Brown University, School of Medicine, Providence, RI, USA; 5Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract: Excessive fibroblast adhesion and proliferation on the surface of medical implants (such as catheters, endotracheal tubes, intraocular lenses, etc) can lead to major postsurgical complications. This study showed that when coated on tissue culture polystyrene, lubricin, a nanostructured mucinous glycoprotein found in the synovial fluid of joints, decreased fibroblast density for up to 2 days of culture compared to controls treated with phosphate buffered saline (PBS). When examining why, similar antifibroblast density results were found when coating tissue culture polystyrene with bovine submaxillary mucin (BSM), an even smaller protein closely related to the central subregion of lubricin. Additionally, results from this study demonstrated that in contrast to BSM or controls (PBS-coated and non-coated samples), lubricin was better at preserving the health of nonadherent or loosely adherent fibroblasts; fibroblasts that did not adhere or loosely adhered on the lubricin-coated tissue culture polystyrene adhered and proliferated well for up to an additional day when they were reseeded on uncoated tissue culture polystyrene. In summary, this study provides evidence for the promise of nanostructured lubricin (and to a lesser extent BSM) to inhibit fibroblast adhesion and growth when coated on medical devices; lubricin should be further explored for numerous medical device applications.

Keywords: lubricin, antiadhesive, fibroblasts, mucin

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]