Back to Journals » International Journal of Nephrology and Renovascular Disease » Volume 3

Long space missions, gene therapy, and the vital role of magnesium: a three-pronged plan for the next 50 years

Authors William J Rowe W

Published 7 September 2010 Volume 2010:3 Pages 123—127

DOI https://doi.org/10.2147/IJNRD.S13032

Review by Single anonymous peer review

Peer reviewer comments 2



William J Rowe

Medical University of Ohio, Toledo, OH, USA

Abstract: Since pharmaceuticals cannot be used in space until liver and kidney dysfunctions are corrected, and with invariable malabsorption, it appears there is no alternative other than to use subcutaneous magnesium (Mg) replacements in the presence of deficiencies and use of gene therapy. I suggest beginning with the correction of as many as four gene deficiencies: atrial natriuretic peptide (ANP), nitric oxide (NO), vascular endothelial growth factor (VEGF), and erythropoietin (EPO), all as well as Mg related perfusion and angiogenesis. There is no evidence of significant lunar radiation levels in the absence of a solar storm. It could then be determined whether this has resulted in correction of liver and kidney dysfunction. If this persists, serial additions of gene therapy will be required determining the effect of each individual gene trial on organ function. Microgravity and endothelial gaps with leaks trigger reduced plasma volume. Partial correction by use of a plasma volume substitute and development of a delivery device may reduce complexity of gene therapy. Research would be conducted both on Earth and in microgravity, with the development of subcutaneous pharmaceuticals and Mg, and a space walk-reliable subcutaneous silicon device, given that no replenishable subcutaneous device is presently available. A three-pronged approach provides a plan for the next 50 years: A. complete correction of a Mg deficit; B. partial replacement with plasma volume substitutes, and C. multiple gene factor strategy.

Keywords: malabsorption, gene therapy, kidneys, liver, magnesium, microgravity, space flight

Creative Commons License © 2010 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.