Back to Journals » OncoTargets and Therapy » Volume 11

lncRNA differentiation antagonizing nonprotein coding RNA overexpression accelerates progression and indicates poor prognosis in pancreatic ductal adenocarcinoma

Authors Chen L, Liu J, Tang T, Zhang Y, Liu M, Xu L, Zhang J

Received 2 March 2018

Accepted for publication 2 July 2018

Published 9 November 2018 Volume 2018:11 Pages 7955—7965

DOI https://doi.org/10.2147/OTT.S167065

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Colin Mak

Peer reviewer comments 2

Editor who approved publication: Dr Jianmin Xu


Lei Chen,* Jie Liu,* Tong Tang, Yong-Chuan Zhang, Ming-Zhong Liu, Li-Ya Xu, Jun Zhang

General Surgery Department, Dazhou Central Hospital, Dazhou 635000, Sichuan, China

*These authors contributed equally to this work

Background: lncRNA differentiation antagonizing nonprotein coding RNA (lncRNA DANCR) has been suggested to play an oncogenic role in multiple cancers. However, to the best of our knowledge, the clinical significance and role of DANCR in pancreatic ductal adenocarcinoma (PDAC) has not been illuminated till now. The present study aims to identify the functional role of DANCR in PDAC.
Methods: The expression of DANCR was detected in PDAC cells and tissues. The correlation of DANCR expression and PDAC clinicopahological features was analysed. Kaplan-Meier method was used to depict the overall survival (OS) rate and shorter progression-free survival (PFS) of PDAC patients, and Log-rank test was performed to analyse the difference. Univariate and multivariate COX regression model were utilized to analyse the risk factors for prognosis. Transwell assay and Matrigel assay were conducted to detect the effect of DANCR on the migration and invasion of PDAC cells, respectively. Colony formation assay and Cell Counting Kit-8 (CCK-8) assay were performed to evaluate the function of DANCR on proliferation. The mechanisms of DANCR exerting its function were also explored.
Results: DANCR was revealed to promote PDAC progression, with relatively higher expression levels in PDAC cell lines and tissues. Correlation analysis of the clinicopathological features and DANCR expression found that high DANCR expression was statistically correlated with vascular invasion (P=0.013), advanced T stage (P=0.005), lymph node metastasis (P<0.001) and advanced TNM stage (P<0.001). Notably, survival analysis discovered that high DANCR expression predicted lower OS rate and shorter PFS period. In addition, high DANCR expression was identified as an independent risk factor for poor OS (HR=1.199, 95% CI=1.113–1.290, P<0.001) and PFS (HR=1.199, 95% CI=1.114–1.290, P<0.001) of PDAC. Moreover, in vitro assays detected that the migration and invasion of Panc1 cells with DANCR deficiency were significantly suppressed in the Transwell assay and the Matrigel assay. However, the motility of BxPC3 cells with DANCR overexpression was obviously increased. In addition, the loss of DANCR suppressed the proliferation of Panc1 cells in the CCK-8 assay and the colony formation assay, while ectopic expression of DANCR in BxPC3 cells promoted the proliferation. Besides, microRNA-33a-5p/AXL signaling pathway may be involved in mediating the function of DANCR.
Conclusion: Overexpression of lncRNA DANCR in PDAC is associated with cancer progression and predicts poor OS and PFS. DANCR could promote the proliferation and metastasis of PDAC cells. DANCR may serve as a potential prognostic marker and therapeutic target in PDAC.

Keywords:
lncRNA DANCR, pancreatic cancer, prognosis, proliferation, metastasis

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]