Back to Journals » International Journal of Nanomedicine » Volume 7

Liposomes bearing fibrinogen could potentially interfere with platelet interaction and procoagulant activity

Authors Hernandez, Urban, Casals E, Estelrich J, Escolar G, Galán A

Received 23 November 2011

Accepted for publication 2 February 2012

Published 10 May 2012 Volume 2012:7 Pages 2339—2347

DOI https://doi.org/10.2147/IJN.S28542

Review by Single anonymous peer review

Peer reviewer comments 3



M Rosa Hernández1, Patricia Urbán2, Elisenda Casals3, Joan Estelrich3, Ginés Escolar1, Ana M Galán1

1Department of Hemotherapy and Hemostasis, Hospital Clinic, CDB, IDIBAPS, UB, Barcelona, Spain; 2Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona, Spain; 3Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Spain

Background: The contribution of fibrinogen (FBN) to hemostasis acting on platelet aggregation and clot formation is well established. It has been suggested that FBN-coated liposomes could be useful in restoring hemostasis. In the present study, we evaluated the modifications induced by multilamellar raw liposomes (MLV) or fibrinogen-coated liposomes (MLV-FBN) on hemostatic parameters.
Materials and methods: Different experimental settings using whole blood or thrombocytopenic blood were used. Thromboelastometry, aggregation studies, platelet function analyzer (PFA-100®) tests and studies under flow conditions were applied to detect the effect of MLV-FBN on hemostatic parameters.
Results: The presence of MLV-FBN in whole blood modified its viscoelastic properties, prolonging clot formation time (CFT) (226.5 ± 26.1 mm versus 124.1 ± 9.4 mm; P < 0.01) but reducing clot firmness (45.4 ± 1.8 mm versus 35.5 ± 2.3 mm; P < 0.05). Under thrombocytopenic conditions, FIBTEM analysis revealed that MLV-FBN shortened clotting time (CT) compared to MLV (153.3 ± 2.8 s versus 128.0 ± 4.6 s; P < 0.05). Addition of either liposome decreased fibrin formation on the subendothelium (MLV 8.1% ± 4.7% and MLV-FBN 0.8% ± 0.5% versus control 36.4% ± 6.7%; P < 0.01), whereas only MLV-FBN significantly reduced fibrin deposition in thrombocytopenic blood (14.4% ± 6.3% versus control 34.5% ± 5.2%; P < 0.05). MLV-FBN inhibited aggregation induced by arachidonic acid (52.1% ± 8.1% versus 88.0% ± 2.1% in control; P < 0.01) and ristocetin (40.3% ± 8.8% versus 94.3% ± 1.1%; P < 0.005), but it did not modify closure times in PFA-100® studies. In perfusion experiments using whole blood, MLV and MLV-FBN decreased the covered surface (13.25% ± 2.4% and 9.85% ± 2.41%, respectively, versus control 22.0% ± 2.0%; P < 0.01) and the percentage of large aggregates (8.4% ± 2.3% and 3.3% ± 1.01%, respectively, versus control 14.6% ± 1.8%; P < 0.01).
Conclusion: Our results reveal that, in addition to the main contribution of fibrinogen to hemostasis, MLV-FBN inhibits platelet-mediated hemostasis and coagulation mechanisms.

Keywords: thrombocytopenia, hemostasis, fibrinogen, liposomes, procoagulant activity, fibrin

Creative Commons License © 2012 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.