Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Liposomal n-butylidenephthalide protects the drug from oxidation and enhances its antitumor effects in glioblastoma multiforme

Authors Lin YL, Chang KF, Huang XF, Hung CL, Chen SC, Chao WR, Liao KW, Tsai NM

Received 31 March 2015

Accepted for publication 23 June 2015

Published 28 September 2015 Volume 2015:10(1) Pages 6009—6020

DOI https://doi.org/10.2147/IJN.S85790

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Dr Thomas J Webster

Yu-Ling Lin,1,2,* Kai-Fu Chang,3,* Xiao-Fan Huang,3 Che-Lun Hung,4 Shyh-Chang Chen,5 Wan-Ru Chao,6,7 Kuang-Wen Liao,1,8 Nu-Man Tsai3,9

1College of Biological Science and Technology, 2Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, 3School of Medical Laboratory and Biotechnology, Chung Shan Medical University, 4Department of Computer Science and Communication Engineering, Providence University, 5Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, 6Institute of Medicine, Chung Shan Medical University, 7Department of Pathology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung, 8Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, 9Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan

*These authors contributed equally to this work

Background: The natural compound n-butylidenephthalide (BP) can pass through the blood–brain barrier to inhibit the growth of glioblastoma multiforme tumors. However, BP has an unstable structure that reduces its antitumor activity and half-life in vivo.
Objective: The aim of this study is to design a drug delivery system to encapsulate BP to enhance its efficacy by improving its protection and delivery.
Methods: To protect its structural stability against protein-rich and peroxide solutions, BP was encapsulated into a lipo-PEG-PEI complex (LPPC). Then, the cytotoxicity of BP/LPPC following preincubation in protein-rich, acid/alkaline, and peroxide solutions was analyzed by MTT. Cell uptake of BP/LPPC was also measured by confocal microscopy. The therapeutic effects of BP/LPPC were analyzed in xenograft mice following intratumoral and intravenous injections.
Results: When BP was encapsulated in LPPC, its cytotoxicity was maintained following preincubation in protein-rich, acid/alkaline, and peroxide solutions. The cytotoxic activity of encapsulated BP was higher than that of free BP (~4.5- to 8.5-fold). This increased cytotoxic activity of BP/LPPC is attributable to its rapid transport across the cell membrane. In an animal study, a subcutaneously xenografted glioblastoma multiforme mouse that was treated with BP by intratumoral and intravenous administration showed inhibited tumor growth. The same dose of BP/LPPC was significantly more effective in terms of tumor inhibition.
Conclusion: LPPC encapsulation technology is able to protect BP’s structural stability and enhance its antitumor effects, thus providing a better tool for use in cancer therapy.

Keywords: n-butylidenephthalide, lipo-PEG-PEI complex, glioblastoma multiforme, antitumor

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Anti-transferrin receptor-modified amphotericin B-loaded PLA–PEG nanoparticles cure Candidal meningitis and reduce drug toxicity

Tang X, Liang Y, Zhu Y, Xie C, Yao A, Chen L, Jiang Q, Liu T, Wang X, Qian Y, Wei J, Ni W, Dai J, Jiang Z, Hou W

International Journal of Nanomedicine 2015, 10:6227-6241

Published Date: 5 October 2015

Natural product-based nanomedicine: recent advances and issues

Watkins R, Wu L, Zhang C, Davis RM, Xu B

International Journal of Nanomedicine 2015, 10:6055-6074

Published Date: 28 September 2015

Molecular targets in arthritis and recent trends in nanotherapy

Roy K, Kanwar RK, Kanwar JR

International Journal of Nanomedicine 2015, 10:5407-5420

Published Date: 26 August 2015

Comparative efficacy and safety of local and systemic methotrexate injection in cesarean scar pregnancy

Peng P, Gui T, Liu X, Chen W, Liu Z

Therapeutics and Clinical Risk Management 2015, 11:137-142

Published Date: 27 January 2015

Is increasing the dose of Entecavir effective in partial virological responders?

Erturk A, Adnan Akdogan R, Parlak E, Cure E, Cumhur Cure M, Ozturk C

Drug Design, Development and Therapy 2014, 8:621-625

Published Date: 29 May 2014

Photodynamic therapy of a 2-methoxyestradiol tumor-targeting drug delivery system mediated by Asn-Gly-Arg in breast cancer

Shi J, Wang Z, Wang L, Wang H, Li L, Yu X, Zhang J, Ma R, Zhang Z

International Journal of Nanomedicine 2013, 8:1551-1562

Published Date: 19 April 2013