Back to Journals » International Journal of Nanomedicine » Volume 12

Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications

Authors Haseeb MT, Hussain MA, Abbas K, Youssif BGM, Bashir S, Yuk SH, Bukhari SN

Received 5 February 2017

Accepted for publication 7 March 2017

Published 6 April 2017 Volume 2017:12 Pages 2845—2855


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Thomas Webster

Muhammad Tahir Haseeb,1,2 Muhammad Ajaz Hussain,3 Khawar Abbas,3 Bahaa GM Youssif,4,5 Sajid Bashir,1 Soon Hong Yuk,2 Syed Nasir Abbas Bukhari5

1Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan; 2College of Pharmacy, Korea University, Sejong, Republic of Korea; 3Department of Chemistry, University of Sargodha, Sargodha, Pakistan; 4Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt; 5Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Sakaka, Saudi Arabia

Abstract: Polysaccharides are being extensively employed for the synthesis of silver nanoparticles (Ag NPs) having diverse morphology and applications. Herein, we present a novel and green synthesis of Ag NPs without using any physical reaction conditions. Linseed hydrogel (LSH) was used as a template to reduce Ag+ to Ag0. AgNO3 (10, 20, and 30 mmol) solutions were mixed with LSH suspension in deionized water and exposed to diffused sunlight. Reaction was monitored by noting the change in the color of reaction mixture up to 10 h. Ag NPs showed characteristic ultraviolet-visible (UV/Vis) absorptions from 410 to 437 nm in the case of sunlight and 397–410 nm in the case of temperature study. Transmission electron microscopy images revealed the formation of spherical Ag NPs in the range of 10–35 nm. Face-centered cubic array of Ag NPs was confirmed by characteristic diffraction peaks in powder X-ray diffraction spectrum. Ag NPs were stored in LSH thin films, and UV/Vis spectra recorded after 6 months indicated that Ag NPs retained their texture over the storage period. Significant antimicrobial activity was observed when microbial cultures (bacteria and fungi) were exposed to the synthesized Ag NPs. Wound-healing studies revealed that Ag NP–impregnated LSH thin films could have potential applications as an antimicrobial dressing in wound management procedures.

Keywords: silver nanoparticles, green synthesis, antimicrobial studies, wound dressing, storage and stability

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]