Back to Browse Journals » International Journal of Nanomedicine » Volume 6

Investigation of folate-conjugated fluorescent silica nanoparticles for targeting delivery to folate receptor-positive tumors and their internalization mechanism

Authors Yang H, Lou C, Xu M, Wu C, Miyoshi H, Liu Y

Published Date September 2011 Volume 2011:6 Pages 2023—2032

DOI http://dx.doi.org/10.2147/IJN.S24792

Published 19 September 2011

Hong Yang1,*, Changchun Lou1,*, Mingming Xu1, Chunhui Wu1, Hirokazu Miyoshi2, Yiyao Liu1,3
1Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of China; 2Radioisotope Research Center, University of Tokushima, Tokushima, Japan; 3Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People’s Republic of China
*These authors contributed equally to this work

Abstract: Multifunctionalized nanoparticles (NPs) are emerging as ideal tools for gene/drug delivery, bioimaging, labeling, or intracellular tracking in biomedical applications, and have attracted considerable attention owing to their unique advantages. In this study, fluorescent silica NPs were synthesized by a modified Stöber method using conjugates of 3- mercaptopropyltrimethoxysilane (MPS) and maleimide-fluorescein isothiocyanate (maleimide-FITC). Mean diameters of the NPs were controlled between 212–2111 nm by regulating MPS concentration in the reaction mixture. Maleimide-FITC molecules were doped into NPs or conjugated to the surface of NPs through the chemical reaction of maleimide and thiol groups. The data showed that the former NPs are better than the latter by comparing their fluorescence intensity. Furthermore, folate molecules were linked to the FITC-doped silica NPs by using polyethylene glycol (PEG) (NH2-PEG-maleimide) as a spacer, thus forming folate receptor targeting fluorescent NPs, referred to as NPs(FITC)-PEG-Folate. The quantitative analysis of cellular internalization into different cancer cells showed that the delivery efficiency of KB cells (folate receptor-positive cells) is more than six-fold higher than that of A549 cells (folate receptor-negative cells). The delivery efficiency of KB cells decreased significantly after free folate addition to the cell culture medium because the folate receptors were occupied by the free folate. The NPs endocytosis mechanism was also investigated. It was shown that clathrin, an inhibitor of cell phagocytosis, markedly decreased the NPs uptake into KB cells, suggesting that it plays an important role in NPs cellular internalization. These results demonstrated that the novel particles of NPs(FITC)-PEG-Folate are promising for fluorescent imaging or targeting delivery to folate receptor-positive tumors.

Keywords: fluorescent nanoparticles, silica, folate, targeted delivery, cellular internalization

Download Article [PDF] View Full Text [HTML] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Other articles by this author:

Readers of this article also read:

Polyetherimide-grafted Fe3O4@SiO2 nanoparticles as theranostic agents for simultaneous VEGF siRNA delivery and magnetic resonance cell imaging

Li T, Shen X, Chen Y, Zhang C, Yan J, Yang H, Wu C, Zeng H, Liu Y

International Journal of Nanomedicine 2015, 10:4279-4291

Published Date: 2 July 2015

Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells

Zhang H, Liu G, Zeng X, Wu Y, Yang C, Mei L, Wang Z, Huang L

International Journal of Nanomedicine 2015, 10:2461-2473

Published Date: 27 March 2015

Sustained-release nanoART formulation for the treatment of neuroAIDS

Jayant RD, Atluri VSR, Agudelo M, Sagar V, Kaushik A, Nair M

International Journal of Nanomedicine 2015, 10:1077-1093

Published Date: 4 February 2015

Nanocomplexation of thrombin with cationic amylose derivative for improved stability and hemostatic efficacy

Zhuang B, Li Z, Pang J, Li W, Huang P, Wang J, Zhou Y, Lin Q, Zhou Q, Ye X, Ye H, Liu Y, Zhang LM, Chen R

International Journal of Nanomedicine 2015, 10:939-947

Published Date: 29 January 2015

Cytotoxicity of selenium nanoparticles in rat dermal fibroblasts

Ramos JF, Webster TJ

International Journal of Nanomedicine 2012, 7:3907-3914

Published Date: 23 July 2012

Correcting magnesium deficiencies may prolong life

Rowe WJ

Clinical Interventions in Aging 2012, 7:51-54

Published Date: 16 February 2012

Gold nanoparticle trapping and delivery for therapeutic applications

Aziz MS, Suwanpayak N, Jalil MA, Jomtarak R, Saktioto T, Ali J, Yupapin PP

International Journal of Nanomedicine 2012, 7:11-17

Published Date: 29 December 2011