Back to Journals » Drug Design, Development and Therapy » Volume 8

Investigation of aromatase inhibitory activity of metal complexes of 8-hydroxyquinoline and uracil derivatives

Authors Prachayasittikul V, Pingaew R, Nantasenamat C, Prachayasittikul S, Ruchirawat S, Prachayasittikul V

Received 6 May 2014

Accepted for publication 11 June 2014

Published 14 August 2014 Volume 2014:8 Pages 1089—1096

DOI https://doi.org/10.2147/DDDT.S67300

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 5


Veda Prachayasittikul,1 Ratchanok Pingaew,2 Chanin Nantasenamat,3 Supaluk Prachayasittikul,3 Somsak Ruchirawat,4,5 Virapong Prachayasittikul1

1Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand; 2Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand; 3Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand; 4Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 5Chulabhorn Graduate Institute, Bangkok, Thailand

Purpose: Estrogens play important roles in the pathogenesis and progression of breast cancer as well as estrogen-related diseases. Aromatase is a key enzyme in the rate-limiting step of estrogen production, in which its inhibition is one strategy for controlling estrogen levels to improve prognosis of estrogen-related cancers and diseases. Herein, a series of metal (Mn, Cu, and Ni) complexes of 8-hydroxyquinoline (8HQ) and uracil derivatives (4–9) were investigated for their aromatase inhibitory and cytotoxic activities.
Methods: The aromatase inhibition assay was performed according to a Gentest™ kit using CYP19 enzyme, wherein ketoconazole and letrozole were used as reference drugs. The cytotoxicity was tested on normal embryonic lung cells (MRC-5) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.
Results: Only Cu complexes (6 and 9) exhibited aromatase inhibitory effect with IC50 0.30 and 1.7 µM, respectively. Cytotoxicity test against MRC-5 cells showed that Mn and Cu complexes (5 and 6), as well as free ligand 8HQ, exhibited activity with IC50 range 0.74–6.27 µM.
Conclusion: Cu complexes (6 and 9) were found to act as a novel class of aromatase inhibitor. Our findings suggest that these 8HQ–Cu–uracil complexes are promising agents that could be potentially developed as a selective anticancer agent for breast cancer and other estrogen-related diseases.

Keywords: aromatase inhibitor, anticancer, metal-based compound

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]