Back to Browse Journals » Clinical Ophthalmology » Volume 7

Intraocular pressure-lowering effect of oral paracetamol and its in vitro corneal penetration properties

Authors Mohamed N, Meyer D

Published Date January 2013 Volume 2013:7 Pages 219—227


Received 24 September 2012, Accepted 14 November 2012, Published 30 January 2013

Nabiel Mohamed, David Meyer

Division of Ophthalmology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town, South Africa

Background: Several studies have confirmed the ability of cannabinoids to reduce intraocular pressure. Experimental data recently demonstrated unequivocally that the analgesic effect of paracetamol is due to its indirect action on cannabinoid receptors. The question then arises as to whether paracetamol can reduce intraocular pressure via its effect on intraocular cannabinoid receptors.
Methods: A 2-week, prospective, randomized, controlled, single-center, parallel-group pilot study was carried out to determine the efficacy and safety of paracetamol 1 g orally administered every 6 hours in adult patients with primary or secondary open angle glaucoma as compared with topical levobunolol 0.5% twice a day. Patient well-being was closely monitored throughout the study and focused on hepatic safety in accordance with Drug-Induced Liver Injury Network criteria. The in vitro diffusion kinetics of acetaminophen in a phosphate-buffered solution in rabbit and human corneas was also investigated, with the view to a topical application.
Results: Eighteen adult patients were enrolled in the study, with nine in the topical levobunolol group and nine in the oral paracetamol group. In the levobunolol group, the mean reduction in intraocular pressure at day 7 was 7.5 mmHg (P < 0.008) and at day 14 was 9.1 mmHg (P < 0.005), from a mean baseline intraocular pressure of 29.6 mmHg. The corresponding figures for the paracetamol group were 8.8 mmHg (P < 0.0004) at day 7 and 6.5 mmHg (P < 0.004) at day 14, from a mean baseline intraocular pressure of 29.4 mmHg. Both study regimens were well tolerated. No serious treatment-related adverse events were reported in either of the treatment groups. Liver function tests, systolic/diastolic blood pressure, or heart rate remained unchanged in both groups during the 2 weeks of the study. In the laboratory study, paracetamol 1 mg/mL in phosphate-buffered solution (pH 7.4) showed acceptable flux rates. Steady-state levels were achieved within 12 hours, thus confirming that paracetamol penetrates the cornea well.
Conclusion: Paracetamol 1 g taken orally every 6 hours reduced open angle glaucoma and/or angle recession glaucoma in both groups of patients, in a way comparable with that achieved by a topical beta-adrenergic receptor antagonist.

Keywords: acetaminophen, paracetamol, glaucoma, intraocular pressure, cannabinoids

Download Article [PDF] View Full Text [HTML] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at:

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Single- and multiple-dose pharmacokinetics, pharmacodynamics, and safety of apixaban in healthy Chinese subjects [Corrigendum]

Cui Y, Song Y, Wang J, Yu Z, Schuster A, Barrett YC, Frost C

Clinical Pharmacology: Advances and Applications 2014, 6:61-62

Published Date: 27 March 2014

Pharmacokinetics and pharmacodynamics of acetylsalicylic acid after intravenous and oral administration to healthy volunteers

Nagelschmitz J, Blunck M, Kraetzschmar J, Ludwig M, Wensing G, Hohlfeld T

Clinical Pharmacology: Advances and Applications 2014, 6:51-59

Published Date: 19 March 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Detemir as a once-daily basal insulin in type 2 diabetes

Nelson SE

Clinical Pharmacology: Advances and Applications 2011, 3:27-37

Published Date: 18 August 2011

Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs

Rao S, Song Y, Peddie F, Evans AM

International Journal of Nanomedicine 2011, 6:1245-1251

Published Date: 20 June 2011

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010