Back to Journals » International Journal of Nanomedicine » Volume 7

Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles

Authors Unzueta, Céspedes, Ferrer-Miralles, Casanova, Cedano, Corchero JL, Domingo-Espín J, Villaverde A, Mangues, Vázquez E

Received 31 May 2012

Accepted for publication 27 June 2012

Published 15 August 2012 Volume 2012:7 Pages 4533—4544


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Video abstract presented by Ramon Mangues and Esther Vazquez

Views: 520

Ugutz Unzueta,1–3 María Virtudes Céspedes,3,4 Neus Ferrer-Miralles,1–3 Isolda Casanova,3,4 Juan Cedano,5 José Luis Corchero,1–3 Joan Domingo-Espín,1–3 Antonio Villaverde,1–3 Ramón Mangues,3,4 Esther Vázquez1–3

Institut de Biotecnologia i de Biomedicina, 2Departamento de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 3CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona, 4Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; 5Laboratory of Immunology, Regional Norte, Universidad de la Republica, Salto, Uruguay

Background: Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4) is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing.
Results: Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4+ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer.
Conclusion: Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles, and imaging agents.

Keywords: peptide tag, CXCR4, intracellular targeting, self-assembling, nanoparticles, colorectal cancer

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Readers of this article also read:

Optimal delivery of male breast cancer follow-up care: improving outcomes

Ferzoco RM, Ruddy KJ

Breast Cancer: Targets and Therapy 2015, 7:371-379

Published Date: 23 November 2015

Advances in cancer pain from bone metastasis

Zhu XC, Zhang JL, Ge CT, Yu YY, Wang P, Yuan TF, Fu CY

Drug Design, Development and Therapy 2015, 9:4239-4245

Published Date: 18 August 2015

The role of regulatory T cells in cancer immunology

Whiteside TL

ImmunoTargets and Therapy 2015, 4:159-171

Published Date: 5 August 2015

Update of research on the role of EZH2 in cancer progression

Shen L, Cui J, Liang S, Pang Y, Liu P

OncoTargets and Therapy 2013, 6:321-324

Published Date: 4 April 2013

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

How to reduce your cancer risk: mechanisms and myths

Nahleh Z, Bhatti NS, Mal M

International Journal of General Medicine 2011, 4:277-287

Published Date: 8 April 2011