Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Interstitial diffuse radiance spectroscopy of gold nanocages and nanorods in bulk muscle tissues

Authors Grabtchak S, Montgomery L, Pang B, Wang Y, Zhang C, Li Z, Xia Y, Whelan W

Received 14 December 2014

Accepted for publication 10 January 2015

Published 13 February 2015 Volume 2015:10(1) Pages 1307—1320

DOI https://doi.org/10.2147/IJN.S79246

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Dr Thomas J Webster

Serge Grabtchak,1,2 Logan G Montgomery,1 Bo Pang,3,4 Yi Wang,4,5 Chao Zhang,6,7 Zhiyuan Li,6,7 Younan Xia,4,8 William M Whelan1,9

1Department of Physics, University of Prince Edward Island, Charlottetown, PEI, Canada; 2Departments of Electrical and Computer Engineering, and Physics, Dalhousie University, Halifax, Canada; 3Department of Biomedical Engineering, Peking University, Beijing, People’s Republic of China; 4The Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; 5Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, People’s Republic of China; 6Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, People’s Republic of China; 7College of Physics and Optoelectronics, South China University of Technology, Guangzhou, People’s Republic of China; 8School of Chemistry and Biochemistry, and School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA; 9Atlantic Veterinary College, Charlottetown, PEI, Canada

Abstract: Radiance spectroscopy was applied to the interstitial detection of localized inclusions containing Au nanocages or nanorods with various concentrations embedded in porcine muscle phantoms. The radiance was quantified using a perturbation approach, which enabled the separation of contributions from the porcine phantom and the localized inclusion, with the inclusion serving as a perturbation probe of photon distributions in the turbid medium. Positioning the inclusion at various places in the phantom allowed for tracking of photons that originated from a light source, passed through the inclusion’s location, and reached a detector. The inclusions with high extinction coefficients were able to absorb nearly all photons in the range of 650–900 nm, leading to a spectrally flat radiance signal. This signal could be converted to the relative density of photons incident on the inclusion. Finally, the experimentally measured quantities were expressed via the relative perturbation and arranged into the classical Beer–Lambert law that allowed one to extract the extinction coefficients of various types of Au nanoparticles in both the transmission and back reflection geometries. It was shown that the spatial variation of perturbation could be described as 1/r dependence, where r is the distance between the inclusion and the detector. Due to a larger absorption cross section, Au nanocages produced greater perturbations than Au nanorods of equal particle concentration, indicating a better suitability of Au nanocages as contrast agents for optical measurements in turbid media. Individual measurements from different inclusions were combined into detectability maps.

Keywords: gold nanocages, gold nanorods, turbid media, porcine muscles, diffuse radiance spectroscopy, Beer–Lambert law, perturbation

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Optical birefringence of liquid crystals for label-free optical biosensing diagnosis

Nguyen TT, Han GR, Jang CH, Ju H

International Journal of Nanomedicine 2015, 10:25-32

Published Date: 25 August 2015

In vitro and in vivo effects of graphene oxide and reduced graphene oxide on glioblastoma

Jaworski S, Sawosz E, Kutwin M, Wierzbicki M, Hinzmann M, Grodzik M, Winnicka A, Lipińska L, Włodyga K, Chwalibog A

International Journal of Nanomedicine 2015, 10:1585-1596

Published Date: 25 February 2015

Competitive inhibition of survivin using a cell-permeable recombinant protein induces cancer-specific apoptosis in colon cancer model

Roy K, Kanwar RK, Krishnakumar S, Cheung CH, Kanwar JR

International Journal of Nanomedicine 2015, 10:1019-1043

Published Date: 2 February 2015

Microbubbles coupled to methotrexate-loaded liposomes for ultrasound-mediated delivery of methotrexate across the blood–brain barrier

Wang X, Liu P, Yang W, Li L, Li P, Liu Z, Zhuo Z, Gao Y

International Journal of Nanomedicine 2014, 9:4899-4909

Published Date: 23 October 2014

Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson’s disease

Herrán E, Requejo C, Ruiz-Ortega JA, Aristieta A, Igartua M, Bengoetxea H, Ugedo L, Pedraz JL, Lafuente JV, Hernández RM

International Journal of Nanomedicine 2014, 9:2677-2687

Published Date: 27 May 2014