Back to Journals » International Journal of Nanomedicine » Volume 6

Influence of synthetic superparamagnetic iron oxide on dendritic cells

Authors Mou Y, Chen B, Zhang Y, Hou Y, Xie H, Xia G, Tang M, Huang X, Ni Y, Hu Q

Published 25 August 2011 Volume 2011:6 Pages 1779—1786

DOI https://doi.org/10.2147/IJN.S23240

Review by Single-blind

Peer reviewer comments 3

Yongbin Mou1, Baoan Chen2, Yu Zhang3, Yayi Hou4, Hao Xie4, Guohua Xia2, Meng Tang5, Xiaofeng Huang1, Yanhong Ni1, Qingang Hu1,6
1Central Laboratory of Stomatology, Stomatological Hospital Affiliated Medical School, Nanjing University, 2Department of Hematology, Zhongda Hospital, Medical School, Southeast University, 3State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 4Immunology and Reproductive Biology Laboratory, Medical School, Nanjing University, 5Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China; 6Leeds Dental Institute, Faculty of Medicine and Health, University of Leeds, Leeds, UK

Background: This study investigated the influence of synthetic superparamagnetic iron oxide (SPIO) on dendritic cells and provides a possible method for labeling these cells.
Methods: SPIO nanoparticles were prepared, and their morphology and magnetic properties were characterized. The particles were endocytosed by dendritic cells generated from mouse bone marrow. Labeling efficiency and cellular uptake were analyzed by Prussian blue staining and quantitative spectrophotometric assay. Meanwhile, the surface molecules, cellular apoptosis, and functional properties of the SPIO-labeled dendritic cells were explored by flow cytometry and the mixed lymphocyte reaction assay.
Results: The synthetic nanoparticles possessed a spherical shape and good superparamagnetic behavior. The mean concentration of iron in immature and mature dendritic cells was 31.8 ± 0.7 µg and 35.6 ± 1.0 µg per 1 × 106 cells, respectively. After 12 hours of incubation with SPIO at a concentration of 25 µg/mL, nearly all cells were shown to contain iron. Interestingly, cellular apoptosis and surface expression of CD80, CD86, major histocompatibility II, and chemokine receptor 7 in mature dendritic cells were not affected to any significant extent by SPIO labeling. T cell activation was maintained at a low ratio of dendritic cells to T cells.
Conclusion: SPIO nanoparticles have good superparamagnetic behavior, highly biocompatible characteristics, and are suitable for use in further study of the migratory behavior and biodistribution of dendritic cells in vivo.

Keywords: superparamagnetic iron oxide, dendritic cell, cell labeling



Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

In vivo migration of dendritic cells labeled with synthetic superparamagnetic iron oxide

Mou YB, Hou YY, Chen BA, Hua ZC, Zhang Y, Xie H, Xia GH, Wang ZY, Huang XF, Han W, Ni YH, Hu QG

International Journal of Nanomedicine 2011, 6:2633-2640

Published Date: 28 October 2011

Readers of this article also read:

Monitoring cancer stem cells: insights into clinical oncology

Lin SC, Xu YC, Gan ZH, Han K, Hu HY, Yao Y, Huang MZ, Min DL

OncoTargets and Therapy 2016, 9:731-740

Published Date: 11 February 2016

Companion diagnostics and molecular imaging-enhanced approaches for oncology clinical trials

Van Heertum RL, Scarimbolo R, Ford R, Berdougo E, O’Neal M

Drug Design, Development and Therapy 2015, 9:5215-5223

Published Date: 11 September 2015

Tracking the 2015 Gastrointestinal Cancers Symposium: bridging cancer biology to clinical gastrointestinal oncology

Aprile G, Leone F, Giampieri R, Casagrande M, Marino D, Faloppi L, Cascinu S, Fasola G, Scartozzi M

OncoTargets and Therapy 2015, 8:1149-1156

Published Date: 22 May 2015

Brachytherapy in the treatment of cervical cancer: a review

Banerjee R, Kamrava M

International Journal of Women's Health 2014, 6:555-564

Published Date: 28 May 2014

Palliative nursing care for children and adolescents with cancer

Foster TL, Bell CJ, McDonald CF, Harris JS, Gilmer MJ

Nursing: Research and Reviews 2012, 2:17-25

Published Date: 15 June 2012

Multidisciplinary care in pediatric oncology

Cantrell MA, Ruble K

Journal of Multidisciplinary Healthcare 2011, 4:171-181

Published Date: 30 May 2011

Pegylated liposomal doxorubicin in the management of ovarian cancer

Gabriella Ferrandina, Giacomo Corrado, Angelo Licameli, et al

Therapeutics and Clinical Risk Management 2010, 6:463-483

Published Date: 29 September 2010