Back to Journals » International Journal of Nanomedicine » Volume 11

Influence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases

Authors Gad MM, Rahoma A, Al-Thobity AM, ArRejaie AS

Received 18 August 2016

Accepted for publication 20 September 2016

Published 27 October 2016 Volume 2016:11 Pages 5633—5643

DOI https://doi.org/10.2147/IJN.S120054

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Thomas Webster


Mohammed M Gad,1 Ahmed Rahoma,2,3 Ahmad M Al-Thobity,1 Aws S ArRejaie4

1Department of Substitutive Dental Sciences, 2Department of Restorative Dental Sciences, College of Dentistry, University of Dammam, Dammam, Saudi Arabia; 3Department of Dental Materials, College of Dentistry, Al-Azhar University, Assiut, Egypt; 4Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia


Background: Repeated fracture of the denture base is a common problem in prosthodontics, and it represents a nuisance and a time sink for the clinician. Therefore, the possibility of increasing repair strength using new reinforcement materials is of great interest to prosthodontists.
Aim of the study: This study aimed to evaluate the effects of incorporation of zirconia nanoparticles (nano-ZrO2) on the flexural strength and impact strength of repaired polymethyl methacrylate (PMMA) denture bases.
Materials and methods: One hundred eighty specimens of heat-polymerized acrylic resin were fabricated (90 for each test) and divided into three main groups: one control group (intact specimens) and two groups divided according to surface design (45° bevels and butt joints), in which specimens were prepared in pairs to create 2.5 mm gaps. Nano-ZrO2 was added to repair resin in 2.5 wt%, 5 wt%, and 7.5 wt% concentrations of acrylic powder. A three-point bending test was used to measure flexural strength, and a Charpy-type test was used to measure impact strength. Scanning electron microscopy was used to analyze the fracture surfaces and nano-ZrO2 distribution. The results were analyzed with a paired sample t-test and an unpaired t-test, with a P-value of ≤0.05 being significant.
Results: Incorporation of nano-ZrO2 into the repair resin significantly increased flexural strength (P<0.05). The highest value was found in the bevel group reinforced with 7.5% nano-ZrO2, whereas the lowest value was found in the butt group reinforced with 2.5% nano-ZrO2. The impact strength values of all repaired groups were significantly lower than those of the control group (P<0.05). Among repaired groups, the higher impact strength value was seen in the butt group reinforced with 2.5% nano-ZrO2. The bevel joint demonstrated mainly cohesive failure, whereas the butt joint demonstrated mainly adhesive failure.
Conclusion: Incorporation of nano-ZrO2 into the repair resin improved the flexural strength of repaired denture bases, whereas it decreased impact strength, especially with high nano-ZrO2 concentrations.

Keywords: denture repair, flexural strength, impact strength, PMMA, ZrO2 nanoparticles

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]