Back to Journals » Nanotechnology, Science and Applications » Volume 8

In vitro studies of the toxic effects of silver nanoparticles on HeLa and U937 cells

Authors Kaba S, Egorova E

Received 25 November 2014

Accepted for publication 8 January 2015

Published 5 March 2015 Volume 2015:8 Pages 19—29

DOI https://doi.org/10.2147/NSA.S78134

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 5

Editor who approved publication: Professor Israel (Rudi) Rubinstein


Said I Kaba, Elena M Egorova

Institute of General Pathology and Pathophysiology, Moscow, Russia

Abstract: In the last decade, much attention has been paid to studies of the effect of silver nanoparticles (Ag NPs) on tumor cells. Apart from elucidation of the mechanism of NPs’ interaction with mammalian cells, these studies are aimed at discovering new effective antitumor drugs. In this work, we report about the toxic effects of Ag NPs observed on two types of tumor cells: HeLa (adhesive cells) and U937 (suspension cells). The Ag NPs were obtained by an original method of biochemical synthesis. Particle size was 13.2±4.72 nm, and zeta potential was -61.9±3.2 mV. The toxicity of Ag NPs in the concentration range 0.5–8.0 µg Ag/mL was determined by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and cytofluorometry after 4 and 24 hours' incubation. It was found that Ag NPs had high toxicity toward both cell types. The minimal concentrations where a toxicity effect was registered (toxicity thresholds) lied in the range 0.5–2.0 µg Ag/mL. In parallel with the Ag NP solution, cells were incubated with water solutions of the NP stabilizer (aerosol-OT) and Ag+ ions (as silver nitrate). It was shown that aerosol-OT had no effect on the viability on HeLa cells, but was moderately toxic toward U937, though less dangerous for these cells than Ag NPs. With Ag+ ions, for HeLa no toxic effect was observed, while for U937 they were as toxic as the Ag NPs. The data obtained indicate that Ag NPs as used in this study may prove to be useful for the creation of medicines for cancer therapy.

Keywords: silver nanoparticles, cell viability, apoptosis, tumor cells


Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]