Back to Journals » International Journal of Nanomedicine » Volume 7

In vitro evaluation of anticancer nanomedicines based on doxorubicin and amphiphilic Y-shaped copolymers

Authors Li, Ding J , Tang, Sun, Zhuang, Xu, Chen XS

Received 9 February 2012

Accepted for publication 22 February 2012

Published 31 May 2012 Volume 2012:7 Pages 2687—2697

DOI https://doi.org/10.2147/IJN.S30687

Review by Single anonymous peer review

Peer reviewer comments 2



Di Li,1,2,* Jian Xun Ding,1,3,* Zhao Hui Tang,1 Hai Sun,1 Xiu Li Zhuang,1 Jing Zhe Xu,2 Xue Si Chen1

1
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 2Department of Chemistry, Yanbian University, Yanji, 3Graduate University of Chinese Academy of Sciences, Beijing, China
*These authors contributed equally to this work

Abstract: Four monomethoxy poly(ethylene glycol)-poly(L-lactide-co-glycolide)2 (mPEG-P(LA-co-GA)2) copolymers were synthesized by ring-opening polymerization of L-lactide and glycolide with double hydroxyl functionalized mPEG (mPEG-(OH)2) as macroinitiator and stannous octoate as catalyst. The copolymers self-assembled into nanoscale micellar/vesicular aggregations in phosphate buffer at pH 7.4. Doxorubicin (DOX), an anthracycline anticancer drug, was loaded into the micellar/vesicular nanoparticles, yielding micellar/vesicular nanomedicines. The in vitro release behaviors could be adjusted by content of hydrophobic polyester and pH of the release medium. In vitro cell experiments showed that the intracellular DOX release could be adjusted by content of P(LA-co-GA), and the nanomedicines displayed effective proliferation inhibition against Henrietta Lacks’s cells with different culture times. Hemolysis tests indicated that the copolymers were hemocompatible, and the presence of copolymers could reduce the hemolysis ratio of DOX significantly. These results suggested that the novel anticancer nanomedicines based on DOX and amphiphilic Y-shaped copolymers were attractive candidates as tumor tissular and intracellular targeting drug delivery systems in vivo, with enhanced stability during circulation and accelerated drug release at the target sites.

Keywords: amphiphilic Y-shaped copolymer, anticancer nanomedicine, cellular proliferation inhibition, doxorubicin

Creative Commons License © 2012 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.