Back to Journals » International Journal of Nanomedicine » Volume 7

In vitro biocompatibility of calcined mesoporous silica particles and fetal blood cells

Authors Al Samri MT, Biradar, Alsuwaidi, Balhaj, Al-Hammadi S, Shehab S, Al-Salam, Tariq S, Pramathan, Benedict, Asefa, Souid A

Received 6 April 2012

Accepted for publication 25 April 2012

Published 3 August 2012 Volume 2012:7 Pages 3111—3121


Review by Single-blind

Peer reviewer comments 2

Mohammed T Al Samri,1,* Ankush V Biradar,2,3,* Ahmed R Alsuwaidi,1 Ghazala Balhaj,1 Suleiman Al-Hammadi,1 Safa Shehab,4 Suhail Al-Salam,5 Saeed Tariq,4 Thachillath Pramathan,1 Sheela Benedict,1 Tewodros Asefa,2,3 Abdul-Kader Souid1

1Department of Pediatrics, Abu Dhabi, United Arab Emirates; 2Department of Chemistry and Chemical Biology, 3Department of Chemical Engineering and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; 4Department of Anatomy, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; 5Department of Pathology Faculty of Medicine and Health Sciences, United Arab Emirates University, Al ain, Abu Dhabi, United Arab Emirates

*These authors contributed equally to this work

Background: The biocompatibility of two forms of calcined mesoporous silica particles, labeled as MCM41-cal and SBA15-cal, with fetal blood mononuclear cells was assessed in vitro.
Methods and results: Fetal mononuclear cells were isolated from umbilical cord blood and exposed to 0.5 mg/mL of MCM41-cal or SBA15-cal for several hours. Transmission electron micrographs confirmed the presence of particles in the cytosol of macrophages, neutrophils, and lymphocytes without noticeable damage to the cellular organelles. The particles (especially MCM41-cal) were in close proximity to plasma, and nuclear and mitochondrial membranes. Biocompatibility was assessed by a functional assay that measured cellular respiration, ie, mitochondrial O2 consumption. The rate of respiration (kc, in µM O2 per minute per 107 cells) for untreated cells was 0.42 ± 0.16 (n = 10), for cells treated with MCM41-cal was 0.39 ± 0.22 (n = 5, P > 0.966) and for cells treated with SBA15-cal was 0.44 ± 0.13 (n = 5, P >0.981).
Conclusion: The results show reasonable biocompatibility of MCM41-cal and SBA15-cal in fetal blood mononuclear cells. Future studies are needed to determine the potential of collecting fetal cells from a fetus or neonate, loading the cells in vitro with therapeutic MCM41-cal or SBA15-cal, and reinfusing them into the fetus or neonate.

Keywords: mesoporous silica, nanomaterials, biocompatibility, bioenergetics, in vitro, fetal cells

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Readers of this article also read:

Anti-CEA loaded maghemite nanoparticles as a theragnostic device for colorectal cancer

Campos da Paz M, Almeida Santos MF, Santos CM, da Silva SW, de Souza LB, Lima EC, Silva RC, Lucci CM, Morais PC, Azevedo RB, Lacava ZG

International Journal of Nanomedicine 2012, 7:5271-5282

Published Date: 4 October 2012

Do calcifying nanoparticles really contain 16S rDNA?

Shiekh FA

International Journal of Nanomedicine 2012, 7:5051-5052

Published Date: 18 September 2012

Characterization of drug-release kinetics in trabecular bone from titania nanotube implants

Aw MS, Khalid KA, Gulati K, Atkins GJ, Pivonka P, Findlay DM, Losic D

International Journal of Nanomedicine 2012, 7:4883-4892

Published Date: 12 September 2012

Bioconjugates of PAMAM dendrimers with trans-retinal, pyridoxal, and pyridoxal phosphate

Filipowicz A, Wołowiec S

International Journal of Nanomedicine 2012, 7:4819-4828

Published Date: 6 September 2012

Nanotechnology-based approaches in anticancer research

Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA

International Journal of Nanomedicine 2012, 7:4391-4408

Published Date: 9 August 2012

Effect of molecular weight of polyethyleneimine on loading of CpG oligodeoxynucleotides onto flake-shell silica nanoparticles for enhanced TLR9-mediated induction of interferon-α

Manoharan Y, Ji Q, Yamazaki T, Chinnathambi S, Chen S, Ganesan S, Hill JP, Ariga K, Hanagata N

International Journal of Nanomedicine 2012, 7:3625-3635

Published Date: 16 July 2012

Writing 3D patterns of microvessels

Juodkazis S

International Journal of Nanomedicine 2012, 7:3701-3702

Published Date: 13 July 2012

Optical imaging to trace near infrared fluorescent zinc oxide nanoparticles following oral exposure

Lee CM, Jeong HJ, Yun KN, Kim DW, Sohn MH, Lee JK, Jeong J, Lim ST

International Journal of Nanomedicine 2012, 7:3203-3209

Published Date: 27 June 2012

Bacterial conjunctivitis

Cindy Hutnik, Mohammad H Mohammad-Shahi

Clinical Ophthalmology 2010, 4:1451-1457

Published Date: 6 December 2010