Back to Journals » International Journal of Nanomedicine » Volume 12

In vitro and in vivo evaluation of novel NGR-modified liposomes containing brucine

Authors Li S, Wang X

Received 7 March 2017

Accepted for publication 5 May 2017

Published 11 August 2017 Volume 2017:12 Pages 5797—5804

DOI https://doi.org/10.2147/IJN.S136378

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Dr Linlin Sun


Shu Li, Xi-Peng Wang

Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China

Abstract: In this study, a novel NGR (Asn-Gly-Arg) peptide-modified liposomal brucine was prepared by using spray-drying method. The surface morphology of the liposomes, encapsulation efficiency and particle size were investigated. The data showed that the addition of NGR did not produce any significant influence on brucine liposomes in terms of particle size or zeta potential. In addition, after 3 months of storage, no dramatic change such as visible aggregation, drug content changes or precipitation in the appearance of NGR-brucine liposomes occurred. The in vitro release results indicated that the release of brucine from NGR liposomes was similar to that of liposomes, demonstrating that the NGR modification did not affect brucine release. The in vitro drug-release kinetic model of NGR-brucine liposomes fitted well with the Weibull’s equation. In vivo, NGR-brucine liposomes could significantly extend the bioavailability of brucine; however, there was no significant difference observed in the pharmacokinetic parameters between liposomes and NGR liposomes after intravenous administration. Antitumor activity results showed that NGR-modified liposomes exhibited less toxicity and much higher efficacy in HepG2-bearing mice compared with non-modified liposomes. The enhanced antitumor activity might have occurred because brucine was specifically recognized by NGR receptor on the surface of tumor cells, which enhanced the intracellular uptake of drugs.

Keywords: brucine, liposome, NGR, HepG2, in vivo, in vitro

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]