Back to Journals » International Journal of Nanomedicine » Volume 7

Improving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized graphene oxide

Authors Lu YJ, Yang HW, Hung SC, Huang CY, Li SM, Ma CCM, Chen PY, Tsai HC, Wei KC, Chen JP

Received 21 December 2011

Accepted for publication 11 February 2012

Published 30 March 2012 Volume 2012:7 Pages 1737—1747

DOI https://doi.org/10.2147/IJN.S29376

Review by Single-blind

Peer reviewer comments 4

Yu-Jen Lu1,2,#, Hung-Wei Yang1,#, Sheng-Che Hung3, Chiung-Yin Huang2, Shin-Ming Li4, Chen-Chi M Ma4, Pin-Yuan Chen2, Hong-Chieh Tsai2, Kuo-Chen Wei2, Jyh-Ping Chen1

1Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan, Taiwan; 2Department of Neurosurgery, Chang Gung Memorial Hospital, Kwei-San, Taoyuan, Taiwan; 3Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan; 4Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan

#These authors contributed equally to this work

Background: 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a commercial chemotherapeutic drug for treating malignant brain tumors, has poor thermal stability and a short half-life. Immobilization of BCNU on a nanocarrier might increase the thermal stability of BCNU and extend its half-life.
Methods: Nanosized graphene oxide (GO) could be modified by polyacrylic acid (PAA) to improve the aqueous solubility and increase the cell penetration efficacy of the nanocarrier. PAA–GO intended as a drug carrier for BCNU was prepared and characterized in this study. The size and thickness of PAA–GO was investigated by transmission electron microscopy and atomic force microscopy, and the presence of PAA functional groups was confirmed by electron spectroscopy for chemical analysis and thermogravimetric analysis. BCNU was conjugated to PAA–GO by covalent binding for specific killing of cancer cells, which could also enhance the thermal stability of the drug.
Results: Single layer PAA–GO (about 1.9 nm) with a lateral width as small as 36 nm was successfully prepared. The optimum drug immobilization condition was by reacting 0.5 mg PAA–GO with 0.4 mg BCNU, and the drug-loading capacity and residual drug activity were 198 µg BCNU/mg PAA–GO and 70%, respectively. This nanocarrier significantly prolonged the half-life of bound BCNU from 19 to 43 hours compared with free drug and showed efficient intracellular uptake by GL261 cancer cells. The in vitro anticancer efficacy of PAA–GO–BCNU was demonstrated by a 30% increase in DNA interstrand cross-linking and a 77% decrease in the IC50 value toward GL261 compared with the same dosage of free drug.
Conclusion: Nanosized PAA–GO serves as an efficient BCNU nanocarrier by covalent binding. This nanocarrier will be a promising new vehicle for an advanced drug delivery system in cancer therapy.

Keywords: graphene oxide, BCNU, glioma cells, drug delivery, thermal stability

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Sensory disturbances, inhibitory deficits, and the P50 wave in schizophrenia

Vlcek P, Bob P, Raboch J

Neuropsychiatric Disease and Treatment 2014, 10:1309-1315

Published Date: 14 July 2014

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Development and characterization of a novel nanoemulsion drug-delivery system for potential application in oral delivery of protein drugs

Sun H, Liu K, Liu W, Wang W, Guo C, Tang B, Gu J, Zhang J, Li H, Mao X, Zou Q, Zeng H

International Journal of Nanomedicine 2012, 7:5529-5543

Published Date: 26 October 2012

Facet-sparing lumbar decompression with a minimally invasive flexible MicroBlade Shaver® versus traditional decompression: quantitative radiographic assessment

Lauryssen C, Berven S, Mimran R, Summa C, Sheinberg M, Miller LE, Block JE

Clinical Interventions in Aging 2012, 7:257-266

Published Date: 20 July 2012

Erratum

Schuelert N, Russell FA, McDougall JJ

Orthopedic Research and Reviews 2011, 3:9-10

Published Date: 1 March 2011

Topical diclofenac in the treatment of osteoarthritis of the knee

Niklas Schuelert, Fiona A Russell, Jason J McDougall

Orthopedic Research and Reviews 2011, 3:1-8

Published Date: 6 February 2011