Back to Journals » Drug Design, Development and Therapy » Volume 8

Improving anticancer efficacy of (-)-epigallocatechin-3-gallate gold nanoparticles in murine B16F10 melanoma cells

Authors Chen CC, Hsieh DS, Huang KJ, Chan YL, Hong PD, Yeh MK, Wu CJ

Received 28 November 2013

Accepted for publication 20 February 2014

Published 8 May 2014 Volume 2014:8 Pages 459—474

DOI https://doi.org/10.2147/DDDT.S58414

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Cheng-Cheung Chen,1,2 Dar-Shih Hsieh,1,3 Kao-Jean Huang,4 Yi-Lin Chan,5 Po-Da Hong,6 Ming-Kung Yeh,6–8,* Chang-Jer Wu1,*

1Department of Food Science, National Taiwan Ocean University, Keelung, 2Institute of Preventive Medicine, National Defense Medical Center, Taipei, 3Division of Urology, Department of Surgery, Ren-Ai Hospital, Shulin, New Taipei City, 4Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 5Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 6Materials Technology Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 7School of Pharmacy, National Defense Medical Center, Taipei, 8Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, Republic of China

*These authors contributed equally to this work

Abstract: (-)-Epigallocatechin-3-gallate (EGCG), the major bioactive constituent in green tea, has been reported to effectively inhibit the formation and development of tumors. To maximize the effectiveness of EGCG, we attached it to nanogold particles (EGCG-pNG) in various ratios to examine in vitro cytotoxicity and in vivo anti-cancer activity. EGCG-pNG showed improved anti-cancer efficacy in B16F10 murine melanoma cells; the cytotoxic effect in the melanoma cells treated with EGCG-pNG was 4.91 times higher than those treated with EGCG. The enhancement is achieved through mitochondrial pathway-mediated apoptosis as determined by annexin V assay, JC-10 staining, and caspase-3, -8, -9 activity assay. Moreover, EGCG-pNG was 1.66 times more potent than EGCG for inhibition of tumor growth in a murine melanoma model. In the hemolysis assay, the pNG surface conjugated with EGCG is most likely the key factor that contributes to the decreased release of hemoglobin from human red blood cells.

Keywords: gold nanoparticles, EGCG, anticancer, melanoma

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Development of Yersinia pestis F1 antigen-loaded microspheres vaccine against plague

Huang SS, Li IH, Hong PD, Yeh MK

International Journal of Nanomedicine 2014, 9:813-822

Published Date: 7 February 2014

The preparation and characterization of gold-conjugated polyphenol nanoparticles as a novel delivery system

Hsieh DS, Lu HC, Chen CC, Wu CJ, Yeh MK

International Journal of Nanomedicine 2012, 7:1623-1633

Published Date: 28 March 2012

The comparison of protein-entrapped liposomes and lipoparticles: preparation, characterization, and efficacy of cellular uptake

Chang WK, Tai YJ, Chiang CH, Hu CS, Hong PD, Yeh MK

International Journal of Nanomedicine 2011, 6:2403-2417

Published Date: 20 October 2011

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010