Back to Journals » International Journal of Nanomedicine » Volume 9 » Supplement 2

Immunotoxicity of zinc oxide nanoparticles with different size and electrostatic charge

Authors Kim C, Nguyen H, Ignacio RM, Kim J, Cho H, Meang E, Kim Y, Kim M, Park B, Kim S

Received 20 November 2013

Accepted for publication 17 February 2014

Published 15 December 2014 Volume 2014:9(Supplement 2) Pages 195—205

DOI https://doi.org/10.2147/IJN.S57935

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 5

Cheol-Su Kim,1,* Hai-Duong Nguyen,1,* Rosa Mistica Ignacio,2 Jae-Hyun Kim,1 Hyeon-Cheol Cho,1 Eun Ho Maeng,3 Yu-Ri Kim,4 Meyoung-Kon Kim,4 Bae-Keun Park,5 Soo-Ki Kim1,5

1Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea; 2Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea; 3Healthcare Laboratory, Medical Device Evaluation Team, Korea Testing and Research Institute, Gimpo-si, Gyeonggi-do, Republic of Korea; 4Department of Biochemistry and Molecular Biology, Medical School and College, Korea University, Seoul, Republic of Korea; 5Institute of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea

*These authors contributed equally to this work


Abstract: While zinc oxide (ZnO) nanoparticles (NPs) have been recognized to have promising applications in biomedicine, their immunotoxicity has been inconsistent and even contradictory. To address this issue, we investigated whether ZnO NPs with different size (20 or 100 nm) and electrostatic charge (positive or negative) would cause immunotoxicity in vitro and in vivo, and explored their underlying molecular mechanism. Using Raw 264.7 cell line, we examined the immunotoxicity mechanism of ZnO NPs as cell viability. We found that in a cell viability assay, ZnO NPs with different size and charge could induce differential cytotoxicity to Raw 264.7 cells. Specifically, the positively charged ZnO NPs exerted higher cytotoxicity than the negatively charged ones. Next, to gauge systemic immunotoxicity, we assessed immune responses of C57BL/6 mice after oral administration of 750 mg/kg/day dose of ZnO NPs for 2 weeks. In parallel, ZnO NPs did not alter the cell-mediated immune response in mice but suppressed innate immunity such as natural killer cell activity. The CD4+/CD8+ ratio, a marker for matured T-cells was slightly reduced, which implies the alteration of immune status induced by ZnO NPs. Accordingly, nitric oxide production from splenocyte culture supernatant in ZnO NP-fed mice was lower than control. Consistently, serum levels of pro/anti-inflammatory (interleukin [IL]-1Β, tumor necrosis factor-α, and IL-10) and T helper-1 cytokines (interferon-γ and IL-12p70) in ZnO NP-fed mice were significantly suppressed. Collectively, our results indicate that different sized and charged ZnO NPs would cause in vitro and in vivo immunotoxicity, of which nature is an immunosuppression.

Keywords: immunosuppression, cytokine, ZnO, immune response, cytotoxicity, innate immunity

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]