Back to Journals » International Journal of Nanomedicine » Volume 5

Highly efficient human serum filtration with water-soluble nanoporous nanoparticles

Authors Pujia A, De Angelis F, Scumaci D, Gaspari M, Liberale C, Candeloro P, Cuda G, Di Fabrizio E

Published 19 November 2010 Volume 2010:5 Pages 1005—1015

DOI https://doi.org/10.2147/IJN.S12865

Review by Single-blind

Peer reviewer comments 3


Antonella Pujia1, Francesco De Angelis1,2, Domenica Scumaci3, Marco Gaspari3, Carlo Liberale1,2, Patrizio Candeloro1, Giovanni Cuda3, Enzo Di Fabrizio1,2
1BIONEM Laboratory, Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Germaneto (CZ), Italy; 2IIT, Italian Institute of Technology, Genova, Italy; 3Proteomics and Mass Spectrometry Laboratory, Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Germaneto (CZ), Italy

Background: Human serum has the potential to become the most informative source of novel biomarkers, but its study is very difficult due to the incredible complexity of its molecular composition. We describe a novel tool based on biodegradable nanoporous nanoparticles (NPNPs) that allows the harvesting of low-molecular-weight fractions of crude human serum or other biofluids. NPNPs with a diameter of 200 nm and pore size of a few nm were obtained by ultrasonication of nanoporous silicon. When incubated with a solution, the NPNPs harvest only the molecules small enough to be absorbed into the nanopores. Then they can be recovered by centrifugation and dissolved in water, making the harvested molecules available for further analyses.
Results: Fluorescence microscopy, gel electrophoresis, and mass spectrometry were used to show the enrichment of low-molecular-weight fraction of serum under physiological conditions, with a cut-off of 13 kDa and an enrichment factor >50.
Conclusion: From these findings, we conclude that ability to tune pore size, combined with the availability of hundreds of biomolecule cross-linkers, opens up new perspectives on complex biofluid analysis, discovery of biomarkers, and in situ drug delivery.

Keywords: nanoporous silicon, nanoparticle, biomarker discovery, human serum proteomics, harvesting

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]