Back to Journals » International Journal of Nanomedicine » Volume 12

Green synthesis palladium nanoparticles mediated by white tea (Camellia sinensis) extract with antioxidant, antibacterial, and antiproliferative activities toward the human leukemia (MOLT-4) cell line

Authors Azizi S, Mahdavi Shahri M, Rahman HS, Rahim RA, Rasedee A, Mohamad R

Received 17 August 2017

Accepted for publication 29 September 2017

Published 14 December 2017 Volume 2017:12 Pages 8841—8853


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Prof. Dr. Thomas J. Webster

Susan Azizi,1 Mahnaz Mahdavi Shahri,2 Heshu Sulaiman Rahman,3–5 Raha Abdul Rahim,6 Abdullah Rasedee,5 Rosfarizan Mohamad1,7

1Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; 2Department of Chemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran; 3College of Veterinary Medicine, University of Sulaimani, Sulaimani Nwe, 4College of Health Science, Komar University of Science and Technology (KUST), Chaq-Chaq Qularaise, Sulaimani City, Iraq; 5Faculty of Veterinary Medicine, 6Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, 7Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia

Abstract: Among nanoparticles used for medical applications, palladium nanoparticles (PdNPs) are among the least investigated. This study was undertaken to develop PdNPs by green synthesis using white tea (W.tea; Camellia sinensis) extract to produce the [email protected] NPs. The [email protected] NPs were characterized by UV–vis spectroscopy and X-ray diffractometry, and evaluated with transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The [email protected] NPs were spherical (size 6–18 nm) and contained phenols and flavonoids acquired from the W.tea extract. [email protected] NPs has good 1-diphenyl-2-picrylhydrazyl (DPPH), OH, and NO-scavenging properties as well as antibacterial effects toward Staphylococcus epidermidis and Escherichia coli. MTT assay showed that [email protected] NPs (IC50 =0.006 µM) were more antiproliferative toward the human leukemia (MOLT-4) cells than the W.tea extract (IC50 =0.894 µM), doxorubicin (IC50 =2.133 µM), or cisplatin (IC50 =0.013 µM), whereas they were relatively innocuous for normal human fibroblast (HDF-a) cells. The anticancer cell effects of [email protected] NPs are mediated through the induction of apoptosis and G2/M cell-cycle arrest.

Keywords: green synthesis, palladium nanoparticles, white tea, leukemic cells, cytotoxicity, medical application, nanobiotechnology

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]